精英家教网 > 高中数学 > 题目详情
1.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量Pmg/L与时间th间的关系为P=P0e-kt,如果在前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要15小时.

分析 先利用函数关系式,结合前5个小时消除了l0%的污染物,求出k的值,从而得到过滤过程中废气的污染指数量Pmg/L与时间th间的关系为P=P0e-kt,当P=27.1%P0时,有27.1%P0=P0${e}^{\frac{t}{5}ln0.9}$,求出t值得答案.

解答 解:由题意,前5个小时消除了l0%的污染物,
∵P=P0e-kt
∴(1-10%)P0=P0e-5k
∴k=-$\frac{1}{5}$ln0.9,
则P=P0${e}^{\frac{t}{5}ln0.9}$,
消除27.1%的污染物,则27.1%P0=P0${e}^{\frac{t}{5}ln0.9}$,
即$\frac{t}{5}ln0.9=ln0.271$,
解得:t=15.
故答案为:15.

点评 本题主要考查函数模型的运用,考查学生的计算能力和分析问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=log2$\sqrt{x-1}$的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,cos2B-5cos(A+C)=2.
(1)求角B的值;
(2)若cosA=$\frac{1}{7}$,△ABC的面积为10$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定义域是(  )
A.(0,2)B.(0,2]C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若满足∠ABC=$\frac{π}{3}$,AC=m,BC=3的△ABC恰有一解,则实数m的取值范围是$m=\frac{{3\sqrt{3}}}{2}或m≥3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=a2x3+asinx+|x|+1,a为常数,若f(3)=5,则f(-3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数g(x)=ax-lnx,a∈R,
(1)是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(2)当x∈(0,e]时,证明:${e^2}x>\frac{5}{2}+(1+\frac{1}{x})lnx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥O-ABCD中,底面ABCD是矩形,
(1)若E,F分别为OC,BD中点,求证:EF∥平面OAD;
(2)若侧面OAD⊥底面ABCD.
(i)求证:OA⊥CD;
(ii)若OA=OD=$\sqrt{2}$,AD=2,求证:平面OAB⊥平面OCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an}中,${a_3}=\frac{π}{6}$,则cos(a1+a2+a6)=-1.

查看答案和解析>>

同步练习册答案