精英家教网 > 高中数学 > 题目详情
设a,b,c分别是先后三次抛掷一枚骰子得到的点数.
(Ⅰ)求a+b+c为奇数的概率;(Ⅱ)设A={x|x2-bx+2c<0,x∈R},求A≠∅的概率.
(Ⅰ)由题意知本题是一个n次独立重复试验中恰好发生k次的概率,
设事件A:抛掷一枚骰子得到点数是奇数,则P(A)=
1
2

P(
.
A
)=
1
2

又a+b+c为奇数,则有a,b,c都为奇数;或a,b,c中有2个为偶数,一个为奇数
∴所求概率为P=
C33
(
1
2
)3+
C13
1
2
(
1
2
)2=
1
8
+
3
8
=
1
2
••(6分)
(Ⅱ)设f(x)=x2-bx+2c由A≠∅,知△=b2-8c>0.
又b,c∈{1,2,3,4,5,6}
所以b=6时,c=1,2,3,4;b=5时,c=1,2,3;b=4时,c=1;b=3时,c=1.(10分)
由于f(x)随b,c取值变化,有6×6=36个
故所求的概率为P=
9
6×6
=
1
4
••(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

请选做一题,都做时按先做的题判分,都做不加分.
(1)已知向量
m
=(2sinx,cosx-sinx),
n
=(
3
cosx,cosx+sinx)
,函数f(x)=
m
n

①求函数f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所对的边分别是a、b、c,若f(
A
2
)=2
且a2=bc,试判断△ABC的形状.
(2)已知锐角△ABC,sin(A+B)=
3
5
,sin(A-B)=
1
5

①求证:tanA=2tanB;
②设AB=3,求AB边上的高CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

科目:高中数学 来源:2010年河南省郑州外国语学校高考数学模拟试卷2(理科)(解析版) 题型:解答题

请选做一题,都做时按先做的题判分,都做不加分.
(1)已知向量,函数
①求函数f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所对的边分别是a、b、c,若且a2=bc,试判断△ABC的形状.
(2)已知锐角
①求证:tanA=2tanB;
②设AB=3,求AB边上的高CD的长.

查看答案和解析>>

科目:高中数学 来源:2010年河南省全真模拟(二)数学(理科)试题 题型:解答题

(本小题满分10分)请选做一题,都做时按先做的题判分,都做不加分.

(1)已知向量

①求函数的最小正周期和值域;

②在△ABC中,角A、B、C所对的边分别是a、b、c,若,试判断△ABC的形状.

(2)已知锐角.

①求证:

②设,求AB边上的高CD的长.

 

查看答案和解析>>

科目:高中数学 来源:河南省郑州外国语学校2010届高三考前全真模拟(二)(理) 题型:解答题

 请选做一题,都做时按先做的题判分,都做不加分.

(1)已知向量

①求函数的最小正周期和值域;

②在△ABC中,角A、B、C所对的边分别是a、b、c,若,试判断△ABC的形状.

(2)已知锐角.

①求证:

②设,求AB边上的高CD的长.

 

 

 

 

查看答案和解析>>

同步练习册答案