精英家教网 > 高中数学 > 题目详情
若a1、a2、a3、…an的方差为3,则2(a1-3),2(a2-3),2(a3-3),…2(a8-3)的方差为
 
考点:极差、方差与标准差
专题:概率与统计
分析:若数据x1,x2,…,xn的平均数是
.
x
,方差为s2,标准差为s.则新数据ax1+b,ax2+b,…,axn+b的平均数是a
.
x
+b,方差为a2s2,标准差为as,
特别地,如a=1,则新数据的方差、标准差与原数据相同,分别为s2,s.
解答: 解:方差为:22×3=12,
故答案为:12.
点评:本题考查了方差问题,当一组数据均较大且接近某个常数时,可先将每个数同时减去这个常数,再计算这组新数据的方差,它与原数据的方差相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3
+x2+ax.
(1)当a=-3时,求f(x)的极值;
(2)讨论f(x)的单调性;
(3)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x(1-x)(x>0)
x(1+x)(x<0)
,则f(x)是   (  )
A、奇函数B、偶函数
C、既奇且偶函数D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线
x2
8-λ
+
y2
4-λ
=1(4<λ<8),则此曲线的焦点坐标为(  )
A、(±2,0)
B、(±2
3
,0)
C、(0,±2)
D、(±
12-2λ
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,F1、F2为左、右焦点,且在坐标轴上,离心率为
2
,又双曲线过点(4,-
10
).
(1)求此双曲线的方程;
(2)若点M(3,m)在此双曲线上,证明:F1M⊥F2M;
(3)在(2)的条件下,求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,利用分层抽样的方法抽取其中若干个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],有关数据见下表:
各组组员数各组抽取人数
[13,14)54a
[14,15)b8
[15,16)34219
[16,17)288c
[17,18]72d
(1)求a,b,c,d的值;
(2)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

同时掷两个骰子,两个骰子的点数和可能是2,3,4,…,11,12中的一个,事件A={2,5,7},事件B={2,4,6,8,10,12},那么A∪B={
 
},A∩
.
B
={
 
}.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].那么把函数y=f(x)(x∈D)叫做“同族函数”.
(1)求“同族函数”y=x2(x≥0)符合条件②的区间[a,b].
(2)是否存在实数k,使函数y=k+
x+2
是“同族函数”?若存在,求实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log4(2x+3-x2).
(1)求f(x)定义域
(2)求函数f(x)单调递增区间;
(3)若f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案