【题目】已知椭圆
的左、右焦点为别为F1、F2,且过点
和
.
![]()
(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
【答案】(1)
(2)y=![]()
【解析】
(1)将两点代入椭圆方程,求出a,b,然后求解椭圆的标准方程.
(2)设AF2的方程为x=ty+1,联立直线与椭圆方程,利用韦达定理以及弦长公式,点到直线的距离求解三角形的面积结合基本不等式求解最值,然后求解BC的方程即可.
解:(1)将两点代入椭圆方程,有
解得
,
所以椭圆的标准方程为
.
(2)因为A在x轴上方,可知AF2斜率不为0,故可以设AF2的方程为x=ty+1,
,
得
,所以
,
设原点到直线AF2的距离为d,则
,
所以S△ABC=2S△OAB
=![]()
=![]()
=
,△ABC面积的最大值为
.
在t=0时取到等号成立,此时AB的方程为:x=1,
可得,A(1,
),B(1,-
),C(-1,
),
此时BC的方程为:y=
,
科目:高中数学 来源: 题型:
【题目】已知在图1所示的梯形
中,
,
于点
,且
.将梯形
沿
对折,使平面
平面
,如图2所示,连接
,取
的中点
.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点
,使得直线
平面
?若存在,试确定点
的位置,并给予证明;若不存在,请说明理由;
(3)设
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( )
①命题“函数
的最小值不为
”是假命题;
②“
”是“
”的必要不充分条件;③若
为假命题,则
,
均为假命题;
④若命题
:
,
,则
:
,
;
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com