精英家教网 > 高中数学 > 题目详情
定义在R上的偶函数f(x)的一个单调递增区间为(3,5),则y=f(x-1)
A.图象的对称轴为x=-1,且在(2,4)内递增
B.图象的对称轴为x=-1,且在(2,4)内递减
C.图象的对称轴为x=1,且在(4,6)内递增
D.图象的对称轴为x=1,且在(4,6)内递减
C

试题分析:因为定义在R上的偶函数f(x)的一个单调递增区间为(3,5),所以可知在区间(-5,-3)是递减的去甲,同时那么对于y=f(x-1)是将原函数向右平移一个单位,因此单调增区间为(4,6),那么对称轴为x=1,故排除选项A,B,那么同时结合单调性可知排除D,故选C.
点评:解决该试题的关键是对于图像变换的准确的理解,以及平移变换对于函数图像和性质的影响,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义在上的函数是减函数,且函数的图象关于原点成中心对称,若满足不等式.则当时,的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为奇函数,a为常数。
(1)求的值;并证明在区间上为增函数;
(2)若对于区间上的每一个的值,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数是偶函数,且定义域为,则      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于定义域是R的任意奇函数有(   ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数是定义在上的奇函数.
(Ⅰ)求的值;
(Ⅱ)求函数的值域;
(Ⅲ)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小正周期为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的偶函数,当≥0时,是单调递增的,<0,则函数的图像与轴交点个数是           

查看答案和解析>>

同步练习册答案