【题目】如图,在三棱柱
中,
,
,且
,
底面
,
为
中点,点
为
上一点.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)设
,若![]()
![]()
,写出
的值(不需写过程).
【答案】(1)见解析;(2)
;(3)
.
【解析】
(1)证明
平面
,只要在面
内找到一条直线与
平行;
(2)以
,
,
分别为x,y,z轴建立空间直角坐标系,写出两个面的法向量,再求法向量的夹角,结合图形发现二面角的平面角为钝角,从而求得二面角的余弦值。
(3)由![]()
![]()
,![]()
![]()
可证得![]()
平面
,进而得到![]()
![]()
,再利用相似得到
为
中点。
(1)连接
交
于
,连接
,
因为四边形
为矩形,
,
为对角线,
所以
为
中点,又因为
为
中点,
所以
,
平面
,
平面
,
所以
//平面
.
![]()
(2)因为
底面
,所以
底面
,
又
,所以以
,
,
分别为x,y,z轴建立空间直角坐标系.
则
,
,
,
.
,
,
设平面
的法向量为
,则有
,即
令
,则
.
由题意
底面
,所以
为平面
的法向量,
所以
,又由图可知二面角
为钝二面角,
所以二面角
的余弦值为
。
(3)
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
,直线
设圆C的半径为1,圆心在直线l上.
(1)若圆心C也在直线
上,过点
作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使得
,求圆心C的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,有下列四个命题:
①若
是奇函数,则
的图象关于点
对称;
②若对
,有
,则
的图象关于直线
对称;
③若对
,有
,则
的图象关于点
对称;
④函数
与函数
的图像关于直线
对称.
其中正确命题的序号为__________.(把你认为正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业2018年招聘员工,其中
,
,
,
,
五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
岗位 | 男性 应聘人数 | 男性 录用人数 | 男性 录用比例 | 女性 应聘人数 | 女性 录用人数 | 女性 录用比例 |
| 269 | 167 |
| 40 | 24 |
|
| 40 | 12 |
| 202 | 62 |
|
| 177 | 57 |
| 184 | 59 |
|
| 44 | 26 |
| 38 | 22 |
|
| 3 | 2 |
| 3 | 2 |
|
总计 | 533 | 264 |
| 467 | 169 |
|
(1)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(2)从应聘
岗位的6人中随机选择2人.记
为这2人中被录用的人数,求
的分布列和数学期望;
(3)表中
,
,
,
,
各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于
),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
在如图所示的多面体中,四边形
和
都为矩形。
![]()
(Ⅰ)若
,证明:直线
平面
;
(Ⅱ)设
,
分别是线段
,
的中点,在线段
上是否存在一点
,使直线
平面
?请证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∪B=A,求实数m的取值;
(2)若A∩B={x|0≤x≤3},求实数m的值;
(3)若A
,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆
的方程;
(2)若
上存在两点
,椭圆
上存在两个
点满足:
三点共线,
三点共线,且
,求四边形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
![]()
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com