【题目】(本小题满分12分)
在如图所示的多面体中,四边形和都为矩形。
(Ⅰ)若,证明:直线平面;
(Ⅱ)设, 分别是线段, 的中点,在线段上是否存在一点,使直线平面?请证明你的结论。
【答案】(1)证明详见解析;(2)存在,M为线段AB的中点时,直线平面.
【解析】试题分析:(1)证直线垂直平面,就是证直线垂直平面内的两条相交直线.已经有了,那么再在平面内找一条直线与BC垂直.据题意易得, 平面ABC,所以.由此得平面.(2)首先连结,取的中点O.考虑到, 分别是线段, 的中点,故在线段上取中点,易得.从而得直线平面.
试题解析:(Ⅰ)因为四边形和都是矩形,
所以.
因为AB,AC为平面ABC内的两条相交直线,
所以平面ABC.
因为直线平面ABC内,所以.
又由已知, 为平面内的两条相交直线,
所以, 平面.
(2)取线段AB的中点M,连接,设O为的交点.
由已知,O为的中点.
连接MD,OE,则MD,OE分别为的中位线.
所以, ,
连接OM,从而四边形MDEO为平行四边形,则.
因为直线平面, 平面,
所以直线平面.
即线段AB上存在一点M(线段AB的中点),使得直线平面.
科目:高中数学 来源: 题型:
【题目】已知点,圆.
()设,求过点且与圆相切的直线方程.
()设,直线过点且被圆截得的弦长为,求直线的方程.
()设,直线过点,求被圆截得的线段的最短长度,并求此时的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且.直线与轴、轴分别交于,两点.设直线,的斜率分别为,,证明存在常数使得,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等边△ABC中,
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的程序框图表示的算法功能是( )
A. 计算小于100的奇数的连乘积
B. 计算从1开始的连续奇数的连乘积
C. 从1开始的连续奇数的连乘积,当乘积大于或等于100时,计算奇数的个数
D. 计算1×3×5×…×n≥100时的最小的n的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1=a,其前n项和为Sn , 且满足Sn+Sn﹣1=3n2+2n+4(n≥2),若对任意的n∈N* , an<an+1恒成立,则a的取值范围是( )
A.( , )
B.( , )
C.( , )
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016高考山东文数】已知椭圆C:(a>b>0)的长轴长为4,焦距为2.
(I)求椭圆C的方程;
(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.
(i)设直线PM、QM的斜率分别为k、k',证明为定值.
(ii)求直线AB的斜率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 , =20, =184, =720.
(1)求家庭的月储蓄y关于月收入x的线性回归方程 ;
(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:回归直线的斜率和截距的最小二乘法估计公式分别为: = , = .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com