精英家教网 > 高中数学 > 题目详情

【题目】在等边△ABC中,

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).

【答案】
(1)

解:(1)∵AP=AQ,

∴∠APQ=∠AQP,

∴∠APB=∠AQC,

∵△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BAP=∠CAQ=20°,

∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,

∴∠BAQ=∠BAP+∠PAQ=40°;


(2)

解:如图2,∵AP=AQ,

∴∠APQ=∠AQP,

∴∠APB=∠AQC,

∵△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BAP=∠CAQ,

∵点Q关于直线AC的对称点为M,

∴AQ=AM,∠QAC=∠MAC,

∴∠MAC=∠BAP,

∴∠BAP+∠PAC=∠MAC+∠CAP=60°,

∴∠PAM=60°,

∵AP=AQ,

∴AP=AM,

∴△APM是等边三角形,

∴AP=PM.


【解析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;
    (2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式组:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列是递增数列,其前项和为,且

I)求数列的通项公式;

II,求数列的前 项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列是递增数列,其前项和为,且

1)求数列的通项公式;

2 ,求数列 的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

在如图所示的多面体中,四边形都为矩形。

)若,证明:直线平面

)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数),记的导函数为

(1)证明:当时,上单调递增;

(2)若处取得极小值,求的取值范围;

(3)设函数的定义域为,区间,若上是单调函数,

则称上广义单调.试证明函数上广义单调.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入的x∈[﹣2,2],那么输出的y属于(

A.[5,9]
B.[3,9]
C.(1,9]
D.(3,5]

查看答案和解析>>

同步练习册答案