精英家教网 > 高中数学 > 题目详情

【题目】【2016高考山东文数】已知椭圆C:(a>b>0)的长轴长为4,焦距为2.

I)求椭圆C的方程;

()过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.

(i)设直线PM、QM的斜率分别为k、k',证明为定值.

(ii)求直线AB的斜率的最小值.

【答案】() .()(i)见解析;(ii)直线AB 的斜率的最小值为 .

【解析】

试题分析:()分别计算即得.

()(i)

利用对称点可得

得到直线PM的斜率,直线QM的斜率,即可证得.

(ii),分别将直线PA的方程,直线QB的方程与椭圆方程

联立,

应用一元二次方程根与系数的关系得到表示的式子,进一步应用基本不等式即得.

试题解析:()设椭圆的半焦距为c

由题意知

所以

所以椭圆C的方程为.

()(i)

,可得

所以 直线PM的斜率

直线QM的斜率.

此时,所以为定值.

(ii)

直线PA的方程为

直线QB的方程为.

联立

整理得.

可得

所以

同理.

所以

所以

,可知

所以 ,等号当且仅当时取得.

此时,即,符号题意.

所以直线AB 的斜率的最小值为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

在如图所示的多面体中,四边形都为矩形。

)若,证明:直线平面

)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,问是否存在实数a,使得经过点(1,a)能够作出该曲线的两条切线?若存在求出实数a的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,则求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1+sin2x,sinx﹣cosx), =(1,sinx+cosx),函数f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值及取得最大值相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生在考试时做解答题的情况,老师从甲、乙两个班级里各随机抽取了五份答卷并对解答题第16题(满分13分)的得分进行统计,得到对应的甲、乙两组数据,其茎叶图如图所示,其中x,y∈{0,1,2,3},已知甲组数据的中位数比乙组数据的平均数多 ,则x+y的值为(

A.5
B.4
C.3
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点,离心率,短轴长为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,点为椭圆上一动点(非长轴端点),的延长线于椭圆交于点,的延长线于椭圆交于点,求面积的最大值

查看答案和解析>>

同步练习册答案