精英家教网 > 高中数学 > 题目详情

【题目】设集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且仅有一个是,则实数a的取值范围是

【答案】(﹣1,0]∪[1,+∞)
【解析】解:集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},A和B中有且仅有一个是,故x2﹣2ax+a=0与x2﹣4x+a+5=0有且只有一个方程无解,

∴① ,或 ②

解①可得 a∈,解②可得﹣1<a≤0,或a≥1,故实数a的取值范围是(﹣1,0]∪[1,+∞),

故答案为 (﹣1,0]∪[1,+∞).

当A和B中有且仅有一个是,即为两个一元二次方程有且只有一个无解,结合判断方程是否有解可得出实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求函数y= 的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 表示焦点在y轴上的双曲线,命题q:点(m,1)在椭圆 的内部;命题r:函数f(m)=log2(m﹣a)的定义域;
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p是r的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣px﹣2=0},B={x|x2+qx+r=0},若A∪B={﹣2,1,5},A∩B={﹣2},求p+q+r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)= v,g(x)=f(x)+af′(x).
(1)若a<0,试判断g(x)在定义域内的单调性;
(2)若g(x)在[1,e]上的最小值为 ,求a的值;
(3)证明:当a≥1时,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1的棱长为1,以顶点A为球心, 为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建造一个容积为240m3 , 深为5m的长方体无盖蓄水池,池壁的造价为180元/m2 , 池底的造价为350元/m2 , 如何设计水池的长与宽,才能使水池的总造价为42000元?

查看答案和解析>>

同步练习册答案