精英家教网 > 高中数学 > 题目详情

若定义在上的函数同时满足:①;②;③若,且,则成立.则称函数为“梦函数”.
(1)试验证在区间上是否为“梦函数”;
(2)若函数为“梦函数”,求的最值.

(1)在区间上是“梦函数”;(2)

解析试题分析:(1)紧扣定义只需验证在区间上①②③是否成立;(2)先利用性质③证明函数在区间上单调递增,最后利用赋值法即可求得的最大最小值.
试题解析:(1)显然①;②;                     2分
③若
在区间上是“梦函数”.                      6分
(2)
所以函数在区间上单调递增.
.              12分
考点:函数的性质(单调性与最值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点直线AM,BM相交于点M,且.
(1)求点M的轨迹的方程;
(2)过定点(0,1)作直线PQ与曲线C交于P,Q两点,且,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 满足
(1)求常数的值 ;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)对于函数,当时,,求实数的取值集合;
(2)当时,的值为负,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求上的最小值;
(2)若函数上为增函数,求正实数的取值范围;
(3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中e为自然对数的底数,且当x>0时恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设分别是曲线在点(其中)处的切线,且
①若的倾斜角互补,求的值;
②若(其中是自然对数的底数),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数的最小值为,求的最大值;
(3)若函数的最小值为定义域内的任意两个值,试比较  的大小.

查看答案和解析>>

同步练习册答案