精英家教网 > 高中数学 > 题目详情

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

(1);(2).

解析试题分析:(1),易得;(2)函数在区间上是单调递减函数,则可由减函数的定义得到不等式恒成立,求出的取值范围,或由函数的导函数恒成立求出的取值范围.
试题解析:(1)由,所以,即
(2)解法一:由(1)知
,因为在区间上是单调减函数
所以恒成立,即恒成立,由于,所以实数的取值范围是
解法二:由(1)知,因为在区间上是单调减函数,
所以有恒成立,即恒成立,所以所以实数的取值范围是 
考点:函数的单调性,恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域R上的单调性;
(Ⅲ)设关于的函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的表达式;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求实数的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若定义在上的函数同时满足:①;②;③若,且,则成立.则称函数为“梦函数”.
(1)试验证在区间上是否为“梦函数”;
(2)若函数为“梦函数”,求的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义在上的函数,满足当时, ,且对任意,有,
(1)解不等式
(2)解方程

查看答案和解析>>

同步练习册答案