精英家教网 > 高中数学 > 题目详情

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

(1);(2)

解析试题分析:(1)应用结论:函数满足,则直线是函数图象的对称轴,一般地函数满足,则直线是函数图象的对称轴.(2)二次函数在区间上单调递减,在区间上单调递增,我们在求二次函数在区间上的最值时,要特别注意的关系,也即要讨论在区间上单调性,则单调性得出最值.
试题解析:解:(1)由,得:对称轴
由方程有两个相等的实根可得:
解得
.   5分
(2)
①当,即时,;    6分
②当,即时,;    8分[
③当时,;    10分
综上:.    12分
考点:1、函数图象的对称性;2、二次函数在给定区间的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

上的奇函数.
(Ⅰ)求的值;
(Ⅱ)证明:上为增函数;
(Ⅲ)解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点直线AM,BM相交于点M,且.
(1)求点M的轨迹的方程;
(2)过定点(0,1)作直线PQ与曲线C交于P,Q两点,且,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.(I)求函数的单调递增区间;
(II) 若关于的方程在区间内恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中e为自然对数的底数,且当x>0时恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.

查看答案和解析>>

同步练习册答案