精英家教网 > 高中数学 > 题目详情

已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.

解析试题分析:先利用函数是定义域为的奇函数,利用以及定义求出的值以及确定的关系,然后利用复合函数的单调性将问题转化为内层函数上是增函数进行处理,结合导数来解决,由此确定的正负,最后在根据上一步的结论并根据函数的最大值为求出的值,从而使问题得到解答.
试题解析:是奇函数               3分
,即

,但时,,不合题意;故. …6分
这时上是增函数,且最大值是1.
上是增函数,且最大值是3.

,故;     8分
又当时,;当时,
,又当时,,当时,
所以是增函数,在(-1,1)上是减函数.       10分
时,最大值为3.   11分
经验证:时,符合题设条件,
所以存在满足条件的a、b、c,即                14分
考点:1.函数的奇偶性;2.复合函数的单调性;3.函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义域为R的奇函数.当时,,图像如图所示.

(Ⅰ)求的解析式;
(Ⅱ)若方程有两解,写出的范围;
(Ⅲ)解不等式,写出解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的最大值与最小值之和为,记.
(1)求的值;
(2)证明
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,满足,且方程有两个相等的实根.
(1)求函数的解析式;
(2)当时,求函数的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= 是奇函数
(1)求实数m的值
(2)若函数f(x)在区间上单调递增,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的表达式;
(Ⅱ)判断并证明函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求实数的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是不为零的实数,为自然对数的底数).
(1)若曲线有公共点,且在它们的某一公共点处有共同的切线,求k的值;
(2)若函数在区间内单调递减,求此时k的取值范围.

查看答案和解析>>

同步练习册答案