精英家教网 > 高中数学 > 题目详情

已知函数是不为零的实数,为自然对数的底数).
(1)若曲线有公共点,且在它们的某一公共点处有共同的切线,求k的值;
(2)若函数在区间内单调递减,求此时k的取值范围.

(1)
(2)当时,函数在区间内单调递减.

解析试题分析:(1)设曲线有共同切线的公共点为
.     1分
又曲线在点处有共同切线,
,  2分
,                      3分
解得 .                           4分
(2)由得函数
所以                     5分

.               6分
又由区间知,,解得,或.                     7分
①当时,由,得,即函数的单调减区间为,                      8分
要使得函数在区间内单调递减,
则有                           9分
解得.                  10分
②当时,由,得,或,即函数的单调减区间为,             11分
要使得函数在区间内单调递减,
则有,或,                   12分
这两个不等式组均无解.                        13分
综上,当时,函数在区间内单调递减.  14分
考点:导数的几何意义,应用导数研究函数的单调性、极(最值)值。
点评:难题,本题属于导数内容中的基本问题,(1)运用“函数在某点的切线斜率,就是该点的导数值”,确定直线的斜率。通过研究导数值的正负情况,明确函数的单调区间。确定函数的最值,往往遵循“求导数,求驻点,计算极值、端点函数值,比较大小确定最值”。本题较难,主要是涉及参数K的分类讨论,不易把握。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)对于函数,当时,,求实数的取值集合;
(2)当时,的值为负,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中e为自然对数的底数,且当x>0时恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值,且恰好是的一个零点.
(Ⅰ)求实数的值,并写出函数的单调区间;
(Ⅱ)设分别是曲线在点(其中)处的切线,且
①若的倾斜角互补,求的值;
②若(其中是自然对数的底数),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数图象上任意一点关于原点的对称点的轨迹恰好是函数的图象.
(1)写出函数的解析式;
(2)当时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值点.
(3)设函数的导函数是,当时求证:对任意成立

查看答案和解析>>

同步练习册答案