精英家教网 > 高中数学 > 题目详情

设函数.
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值点.
(3)设函数的导函数是,当时求证:对任意成立

(1)a=4,b=24
(2)当时,,函数上单调递增,此时函数没有极值点
时,由,此时的极大值点,的极小值点.
(3)根据由(2)知上单调递增,又上也单调递增,函数单调性来证明不等式

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是不为零的实数,为自然对数的底数).
(1)若曲线有公共点,且在它们的某一公共点处有共同的切线,求k的值;
(2)若函数在区间内单调递减,求此时k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=x2+x-.
(I)若定义域为[0,3],求f(x)的值域;
(II)若f(x)的值域为[-],且定义域为[a,b],求b-a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若,求处的切线方程;
(II)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数;
(1)当时,试讨论函数的零点的个数;
(2)已知不等式对任意都成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案