精英家教网 > 高中数学 > 题目详情

已知函数.
(I)若,求处的切线方程;
(II)求在区间上的最小值.

(I);(II)

解析试题分析:(I)。所以处的切线方程为:

(II),令
时,函数在区间上递增,所以
时,由(I)知,函数在区间上递减,上递增,所以
时,函数在区间上递减,所以
考点:导数计算,导数的几何性质,应用导数研究函数的单调性、最值。
点评:中档题,本题属于导数应用中的基本问题,曲线的切线的斜率,等于函数在切点的导数值,利用直线方程的点斜式,不难求的切线方程。通过研究函数的单调性,明确了极值情况,比较极值与区间端点函数值大小问题,确定得到最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值点.
(3)设函数的导函数是,当时求证:对任意成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最大值;
(2)若函数有相同极值点,
①求实数的值;
②若对于为自然对数的底数),不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.设关于x的不等式的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像如右所示。
(1)求证:在区间为增函数;
(2)试讨论在区间上的最小值.(要求把结果写成分段函数的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在与轴交点处的切线方程是.
(Ⅰ)求函数的解析式;
(Ⅱ)设函数,若的极值存在,求实数的取值范围以及当取何值时函数分别取得极大和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.
(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中命题的逆命题是否成立,并证明你的结论.

查看答案和解析>>

同步练习册答案