精英家教网 > 高中数学 > 题目详情
在(2+
43
100展开式中,求共有多少个有理数的项?
根据题意,(2+
43
100的二项展开式为Tr+1=C100r•2100-r•(
43
r=C100r•2100-r3
r
4
,r=0,1,2,3,…100
若展开式为有理数,即3
r
4
为有理数,
则r为4的倍数,r=0,4,8,12,…100.
100=0+(n-1)×4,
可得n=26,有26个符合条件,
共有26个有理数的项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
分 组 频 数 频 率
[40,50 ) 2 0.04
[50,60 ) 3 0.06
[60,70 ) 14 0.28
[70,80 ) 15 0.30
[80,90 )
[90,100] 4 0.08
合 计
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
①4名同学分别报名参加学校组织的数学、物理、化学三个项目的竞赛,每人限报其中的一项,不同报法的种数是43
②4名同学分3张有座足球票,每人至多分l张,而且必须分完,那么不同分法的种数是C43
③从含有98件正品,2件次品的100件产品中任意抽取3件,抽取的这3件产品中至少有l件次品的概率是
C
1
2
C
2
99
C
3
100

④在(1-x)2n+1(n∈N*)的二项展开式中,系数最大的项是第n+1项,系数最小的项是第n+2项.
其中真命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从高二年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
分 组 频 数 频 率
[40,50 ) 2 0.04
[50,60 ) 3 0.06
[60,70 ) 14 0.28
[70,80 ) 15 0.30
[80,90 ) a b
[90,100] 5 0.1
合 计 c d
(Ⅰ)求a,b,c,d的值,并估计本次考试全校80分以上学生的百分比;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(2+
43
100展开式中,求共有多少个有理数的项?

查看答案和解析>>

同步练习册答案