精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,已知椭圆,抛物线的焦点的一个顶点,设上的动点,且位于第一象限,记在点处的切线为.

1)求的值和切线的方程(用表示)

2)设交于不同的两点,线段的中点为,直线与过且垂直于轴的直线交于点.

i)求证:点在定直线上;

ii)设轴交于点,记的面积为的面积为,求的最大值.

【答案】(1),切线方程为(2)(ⅰ)证明见解析(ⅱ)的最大值为

【解析】

1)根据椭圆的方程可求出过的定点,按照抛物线的标准方程即可求出的值;利用在点处的导数可求出直线的斜率,利用点斜式即可求出直线方程.2)(i)利用点差法求出,写出直线OD的方程,代入,可求出为定值,即可证明.ii中,为底,点的横坐标为高,用表示三角形的面积,中,为底,的距离为高,依然用表示三角形的面积,换元求最值即可.

解:(I)由题意可得,所以抛物线的焦点F,则.

直线的斜率为,所以切线方程,利用化简可得:.

2)(i)证明:设

由点差法可得,即有

直线OD的方程为,当时,可得即有点M在定直线上;(ii)直线l的方程为,令,可得

,即时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是(

A.乙同学比甲同学发挥的稳定,且平均成绩也比甲同学高

B.乙同学比甲同学发挥的稳定,但平均成绩不如甲同学高

C.甲同学比乙同学发挥的稳定,且平均成绩也比乙同学高

D.甲同学比乙同学发挥的稳定,但平均成绩不如乙同学高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,已知a1=1,Sn1=4an+2.

(1)bn=an12an,证明:数列{bn}是等比数列;

(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,过点的直线与抛物线相交于两点,弦的中点的轨迹记为.

1)求的方程;

2)已知直线相交于两点.

i)求的取值范围;

ii轴上是否存在点,使得当变动时,总有?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;

(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示椭圆,命题恒成立;

1)若命题为真命题,求实数的取值范围;

2)若命题为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

20

30

合计

30

25

55

(1)判断是否有的把握认为喜欢“人文景观”景点与年龄有关?

(2)已知20岁到40岁喜欢“人文景观”景点的市民中,有3位还比较喜欢“自然景观”景点,现在从20岁到40岁的10位市民中,选出3名,记选出喜欢“自然景观”景点的人数为,求的分布列、数学期望.

(参考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案