【题目】某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢 | 不喜欢 | 合计 | |
大于40岁 | 20 | 5 | 25 |
20岁至40岁 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(1)判断是否有
的把握认为喜欢“人文景观”景点与年龄有关?
(2)已知20岁到40岁喜欢“人文景观”景点的市民中,有3位还比较喜欢“自然景观”景点,现在从20岁到40岁的10位市民中,选出3名,记选出喜欢“自然景观”景点的人数为
,求
的分布列、数学期望.
(参考公式:
,其中
)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知椭圆![]()
,抛物线![]()
的焦点
是
的一个顶点,设
是
上的动点,且位于第一象限,记
在点
处的切线为
.
(1)求
的值和切线
的方程(用
表示)
(2)设
与
交于不同的两点
,线段
的中点为
,直线
与过
且垂直于
轴的直线交于点
.
(i)求证:点
在定直线上;
(ii)设
与
轴交于点
,记
的面积为
,
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量
单位:万只
与相应年份
序号
的数据表和散点图
如图所示
,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数
单位:个
关于x的回归方程
.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊 |
|
|
|
|
|
|
|
|
|
根据表中的数据和所给统计量,求y关于x的线性回归方程
参考统计量:
,
;
试估计:
该县第一年养殖山羊多少万只
到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
为
边上一点,
,
.
![]()
(1)证明:平面
平面
.
(2)若
,试问:
是否与平面
平行?若平行,求三棱锥
的体积;若不平行,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
,中奖可以获得2分;方案乙的中奖率为
,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为
,求
的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
的上顶点为
,左、右焦点分别为
,
,直线
的斜率为
,点
,
在椭圆
上,其中
是椭圆上一动点,
点坐标为
.
(1)求椭圆
的标准方程;
(2)作直线
与
轴垂直,交椭圆于
,
两点(
,
两点均不与
点重合),直线
,
与
轴分别交于点
,
,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表是甲流水线样本频数分布表,图是乙流水线样本频率分布直方图.
![]()
表甲流水线样本频数分布表
产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(2)由以上统计数据作出2×2列联表,并回答能否有95%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”
χ2![]()
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com