精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,椭圆的上顶点为,左、右焦点分别为,直线的斜率为,点在椭圆上,其中是椭圆上一动点,点坐标为.

1)求椭圆的标准方程;

2)作直线轴垂直,交椭圆于两点(两点均不与点重合),直线轴分别交于点,试求的最小值.

【答案】(1) (2)4

【解析】

1)根据直线的斜率求得的关系式,结合在椭圆上列方程,求得的值,进而求得椭圆标准方程.

2)设出的坐标,求得直线的方程,由此求得的坐标,即求得的表达式,对利用基本不等式,结合的坐标满足椭圆方程进行化简,由此求得的最小值.

1)由直线的斜率为可知直线的倾斜角为.

中,,于是

椭圆,将代入得,所以.

所以,椭圆的标准方程.

2)设点

于是,直线,令

所以

直线,令

所以

代入上式并化简

(即)时取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;

(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

20

30

合计

30

25

55

(1)判断是否有的把握认为喜欢“人文景观”景点与年龄有关?

(2)已知20岁到40岁喜欢“人文景观”景点的市民中,有3位还比较喜欢“自然景观”景点,现在从20岁到40岁的10位市民中,选出3名,记选出喜欢“自然景观”景点的人数为,求的分布列、数学期望.

(参考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雾霾大气严重影响人们的生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为,可能的最大亏损率分别为,投资人计划投资金额不超过9万元,要求确保可能的资金亏损不超过万元.

若投资人用x万元投资甲项目,y万元投资乙项目,试写出xy所满足的条件,并在直角坐标系内作出表示xy范围的图形.

根据的规划,投资公司对甲、乙两个项目分别投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点M是棱长为2的正方体ABCD-A1B1C1D1的棱AD的中点,点P在面BCC1B1所在的平面内,若平面D1PM分别与平面ABCD和平面BCC1B1所成的锐二面角相等,则点P到点C1的最短距离是(

A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是平行四边形,,侧面底面,, 分别为的中点,点在线段上.

(Ⅰ)求证:直线平面

(Ⅱ)若的中点,求平面与平面所成锐二面角的余弦值;

(Ⅲ)设,当为何值时,直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCDA1B1C1D1中,PA1D1的中点,QA1B1上任意一点,EFCD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是(

A.P到平面QEF的距离

B.直线PQ与平面PEF所成的角

C.三棱锥PQEF的体积

D.二面角PEFQ的大小

查看答案和解析>>

同步练习册答案