精英家教网 > 高中数学 > 题目详情
在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点,且满足
(I)求动点P所在曲线C的方程;
(II)过点B作斜率为的直线l交曲线C于M、N两点,且++=,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
【答案】分析:(I)确定向量AQ,BQ的坐标,利用,即可得到动点P所在曲线C的轨迹方程.
(II)假设l的方程与椭圆方程联立,利用向量知识,确定M,N,G,H的坐标,进而确定点到四点的距离相等,从而可得结论.
解答:解::(I)依据题意,有=(x+1,y),=(x-1,y),
,∴x2-1+2y2=1,
∴动点P所在曲线C的轨迹方程是 +y2=1.
(II)因直线l过点B,且斜率为k=-,故有l:y=-(x-1).
联立方程组,得2x2-2x-1=0.
设两曲线的交点为M(x1,y1)、N(x2,y2),∴x1+x2=1,y1+y2=
++=,点G与点H关于原点对称,于是,可得点H(-1,-)、G(1,).
若线段MN、GH的中垂线分别为l1和l2,则有l1:y-=(x-),l2:y=-x.
联立方程组,解得l1和l2的交点为O1,-).
因此,可算得|O1H|==,|O1M|==
所以,四点M、G、N、H共圆,圆心坐标为O1,-),半径为
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查四点共圆,正确运用向量知识,确定圆心坐标与半径是关键,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淄博一模)在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的
2
倍后得到点Q(x,
2
y),且满足
AQ
BQ
=1.
(Ⅰ)求动点P所在曲线C的方程;
(Ⅱ)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=
0
,试求△MNH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的
2
倍后得到点Q(x,
2
y)
,且满足
AQ
BQ
=1

(I)求动点P所在曲线C的方程;
(II)过点B作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足·=1.

(1)求动点P所在曲线C的方程;

(2)过点B作斜率为-的直线L交曲线C于M、N两点,且++=,试求△MNH的面积.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三4月自主检测文科数学试卷(解析版) 题型:解答题

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足·=1.

(Ⅰ)求动点P所在曲线C的方程;

(Ⅱ)过点B作斜率为-的直线l交曲线C于M、N两点,且++=,试求△MNH的面积.

 

查看答案和解析>>

科目:高中数学 来源:2012年山东省莱芜一中高三4月自主检测数学试卷(文科)(解析版) 题型:解答题

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足=1.
(Ⅰ)求动点P所在曲线C的方程;
(Ⅱ)过点B作斜率为-的直线l交曲线C于M、N两点,且++=,试求△MNH的面积.

查看答案和解析>>

同步练习册答案