精英家教网 > 高中数学 > 题目详情

设等比数列{qn-1}(q>1)的前n项和为Sn,前n+1项的和为Sn+1,则数学公式=________.


分析:由等比数列的求和公式可得,,代入可得==可求
解答:由等比数列的求和公式可得,
===
故答案为:
点评:本题主要考查了等比数列的求和公式的应用及型数列极限的求解,解题的关键是灵活应用基本公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{qn-1}(q>1)的前n项和为Sn,前n+1项的和为Sn+1,则
lim
n→∞
Sn
Sn+1
=
1
q
1
q

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为SnSn=
a1(1-qn)1-q
(a1,q∈R,a1≠0,q≠1)

(1)求证:数列{an}是等比数列;
(2)若q∈N*,是否存在q的某些取值,使数列{an}中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.
(3)若q∈R,是否存在q∈[3,+∞),使数列{an}中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为B1,B2,…,Bn,试用n,q表示B1+B2+…+Bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).
①能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm (m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.
②能否找到q的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等比数列{qn-1}(q>1)的前n项和为Sn,前n+1项的和为Sn+1,则
lim
n→∞
Sn
Sn+1
=______.

查看答案和解析>>

同步练习册答案