精英家教网 > 高中数学 > 题目详情

【题目】f'(x)是函数f(x)的导函数,f'(x)是函数f'(x)的导函数.对于三次函数y=f(x),若方程f'(x0)=0,则点( )即为函数y=f(x)图象的对称中心.设函数f(x)= ,则f( )+f( )+f( )+…+f( )=(
A.1008
B.2014
C.2015
D.2016

【答案】D
【解析】解:依题意,得:f′(x)=x2﹣x+3,∴f″(x)=2x﹣1.
由f″(x)=0,即2x﹣1=0.
∴x=
∴f( )=1,
∴f(x)的对称中心为( ,1)
∴f(1﹣x)+f(x)=2,
∴f( )+f( )+f( )+…+f( )=2016.
故选:D.
【考点精析】解答此题的关键在于理解基本求导法则的相关知识,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论:
①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23n
③存在k∈( ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是(
A.①②③
B.①③④
C.①②④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B=(
A.{0,1,2,3,4}
B.{0,1,2}
C.{0,2,4}
D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有(
①幂函数的图象一定不过第四象限;
②已知常数a>0且a≠1,则函数f(x)=ax1﹣1恒过定点(1,0);
③若存在x1 , x2∈I,当x1<x2时,f(x1)<f(x2),则y=f(x)在I上是增函数;
的单调减区间是(﹣∞,0)∪(0,+∞).
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|0≤x≤2},N={y|0≤y≤2},给出如下四个图形,其中能表示从集合M到集合N的函数关系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数,当时, ,则关于的函数的所有零点之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
( I)判断f(x)的奇偶性;
( II)求证:f(x)+f( )为定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.

查看答案和解析>>

同步练习册答案