4£®ÒÑÖªF1£¬F2ΪÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬OÊÇ×ø±êÔ­µã£¬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±ÏßMF2½»ÍÖÔ²ÓÚM£¨$\sqrt{2}$£¬1£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ý×ó½¹µãF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬Èô$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©Çó³öcµÄÖµ£¬¸ù¾ÝÍÖÔ²µÄÐÔÖÊÇó³öa£¬bµÄÖµ£¬´Ó¶øÇó³öÍÖÔ²CµÄ·½³Ì¼´¿É£»
£¨¢ò£©Éè³öA¡¢BµÄ×ø±ê£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+$\sqrt{2}$£©£¬¸ù¾ÝÖ±ÏߺÍÍÖÔ²µÄ·½³ÌÇó³ökµÄÖµ£¬´Ó¶øÇó³öÖ±Ïß·½³Ì¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌõ¼þÖª$c=\sqrt{2}$£¬ÇÒ$\frac{2}{a^2}+\frac{1}{b^2}=1$£¬ÓÉa2=b2+c2£¬
½âµÃ£¬$a=2£¬b=\sqrt{2}$£¬¡­£¨4·Ö£©
ËùÒÔÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£®¡­£¨5·Ö£©
£¨¢ò£©ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
µ±l¡ÍxÖáʱ£¬A£¨-$\sqrt{2}$£¬-1£©£¬B£¨-$\sqrt{2}$£¬1£©£¬ËùÒÔ$\overrightarrow{OA}$•$\overrightarrow{OB}$¡Ù0£¬¡­£¨6·Ö£©
ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+$\sqrt{2}$£©£¬
´úÈëÍÖÔ²·½³ÌµÃ£¨1+2k2£©x2+4$\sqrt{2}$k2x+4k2-4=0£®       ¡­£¨8·Ö£©
ËùÒÔ$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=-\frac{4{\sqrt{2}k}^{2}}{1+{2k}^{2}}}\\{{{x}_{1}x}_{2}=\frac{{4k}^{2}-4}{1+{2k}^{2}}}\end{array}\right.$                       ¡­£¨9·Ö£©
ÓÉ$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬µÃx1x2+y1y2=0£®¡­£¨10·Ö£©
x1•x2+k2£¨x1+$\sqrt{2}$£©£¨x2+$\sqrt{2}$£©
=£¨1+k2£©x1•x2+$\sqrt{2}$k2£¨x1+x2£©+2k2=0£®
´úÈëµÃ$\frac{£¨1{+k}^{2}£©£¨{4k}^{2}-4£©}{1+{2k}^{2}}$-$\frac{4{\sqrt{2}k}^{2}•{\sqrt{2}k}^{2}}{1+{2k}^{2}}$+2k2=0£¬
½âµÃ£ºk=¡À$\sqrt{2}$£®¡­£¨12·Ö£©
ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=¡À$\sqrt{2}$£¨x+$\sqrt{2}$£©£¬
¼´$\sqrt{2}x-y+2=0$»ò$\sqrt{2}x+y+2=0$£®

µãÆÀ ±¾ÊÔÌâÖ÷ÒªÊÇ¿¼²éÁËÍÖÔ²µÄ·½³ÌÒÔ¼°Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÈ«¼¯U={1£¬2£¬3£¬4£¬5£¬6£¬7}£¬A={1£¬3£¬6}£¬B={2£¬3£¬5£¬7}£¬ÔòA¡É£¨∁UB£©µÈÓÚ£¨¡¡¡¡£©
A£®{3£¬4}B£®{1£¬6}C£®{2£¬5£¬7}D£®{1£¬3£¬4£¬6}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èôżº¯Êýy=f£¨x£©ÔÚ£¨-¡Þ£¬0]ÉϵÝÔö£¬Ôò²»µÈʽf£¨lnx£©£¾f£¨1£©µÄ½â¼¯ÊÇ$£¨\frac{1}{e}£¬e£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®$\frac{1}{2}$sin75¡ã+$\frac{\sqrt{3}}{2}$sin15¡ãµÄÖµµÈÓÚ$\frac{{\sqrt{2}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪ʵÊýa£¾0£¬b£¾0£¬$\sqrt{2}$ÊÇ4aÓë2bµÄµÈ±ÈÖÐÏÔò$\frac{1}{a}+\frac{2}{b}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{8}{3}$B£®$\frac{11}{3}$C£®8D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ä³ÈË´Ó¼×µØÈ¥Òҵع²×ßÁË500m£¬Í¾¾­Ò»Ìõ¿íΪx mµÄºÓÁ÷£¬¸ÃÈ˲»Ð¡ÐİÑÒ»¼þÎïÆ·¶ªÔÚ;ÖУ¬ÈôÎïÆ·µôÔÚºÓÀï¾ÍÕÒ²»µ½£¬ÈôÎïÆ·²»µôÔÚºÓÀï¾ÍÄÜÕÒµ½£®ÒÑÖª¸ÃÎïÆ·Äܱ»ÕÒµ½µÄ¸ÅÂÊΪ$\frac{24}{25}$£¬ÔòºÓ¿íΪ£¨¡¡¡¡£©
A£®80mB£®20mC£®40mD£®50m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ö¸³öÈý¶ÎÂÛ¡°×ÔÈ»ÊýÖÐûÓÐ×î´óµÄÊý£¨´óǰÌᣩ£¬$\sqrt{2}$ÊÇ×ÔÈ»Êý£¨Ð¡Ç°Ìᣩ£¬ËùÒÔ$\sqrt{2}$²»ÊÇ×î´óµÄÊý£¨½áÂÛ£©¡±ÖеĴíÎóÊÇСǰÌᣮ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x£¾0ʱ£¬$f£¨x£©=x-\frac{3}{x}-2$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Çóº¯Êýf£¨x£©µÄËùÓÐÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¸´Êýz=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$£¬$\overline{z}$ÊÇzµÄ¹²éÊý£¬Ôò$\overrightarrow{z}$µÄÄ£µÈÓÚ1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸