精英家教网 > 高中数学 > 题目详情

【题目】已知斜率为的直线与椭圆C:交于A、B两点,线段AB的中点为M(),(m)。

(1)证明:

(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

【答案】(1)见解析(2)见解析

【解析】

(1)设A(x1,y1),B(x2,y2),利用点差法得6(x1﹣x2)+8m(y1﹣y2)=0,k==﹣=﹣又点M(1,m)在椭圆内,即,解得m的取值范围,即可得k<﹣

(2)设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2

++=,可得x3﹣1=0,由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.即可证明|FA|+|FB|=2|FP|.

(1)设点,,,

两式相减有:,

:

由题知:,

由题设得: ,

(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),

可得x1+x2=2

++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,

∴x3=1

由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=

|FA|+|FB|=4﹣

∴|FA|+|FB|=2|FP|,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩游戏,游戏规则如下面的程序框图所示,求甲胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是(
A.若“p且q”为假,则p、q至少有一个是假命题
B.命题“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
C.“φ= ”是“y=sin(2x+φ)为偶函数”的充要条件
D.a<0时,幂函数y=xa在(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2﹣2x+a=0.
(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;
(2)若AB为圆M的任意一条直径,且 =﹣6(其中O为坐标原点),求圆M的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量(单位:千克)与该地当日最低气温(单位: )的数据,如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回归方程

2)判断之间是正相关还是负相关;若该地1月份某天的最低气温为6,请用所求回归方程预测该店当日的营业额.

: 回归方程 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,圆O的参数方程为为参数).过点(且倾斜角为的直线与圆O交于A、B两点.

(1)求的取值范围;

(2)求AB中点P的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,截至2016年底全国微信注册用户数量已经突破9.27亿,为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量(个)

频数

频率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值及样本中微信群个数超过12的概率;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(Ⅲ)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过12的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设k是一个正整数,(1+ k的展开式中第四项的系数为 ,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域内的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.

查看答案和解析>>

同步练习册答案