精英家教网 > 高中数学 > 题目详情

设实数x、y满足条件,则的最大值是           

 

【答案】

最大值为

【解析】

试题分析:的几何意义即可行域上的点与原点连线的斜率。画出可行域,

发现x+2y-4=0与y=

的交点(1,)与原点连线的斜率的最大值是

考点:本题主要考查简单线性规划。

点评:在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设实数x,y满足条件
x≥0
x≤y
x+2y-4≤0
,则z=2x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x、y满足条件
x+y≤3
y≤x-1
y≥0
,则
y
x
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足条件
1≤lg(xy2)≤2
-1≤lg
x2
y
≤2
,则lg
x3
y4
的取值范围为
[-4,3]
[-4,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)设实数x,y满足条件
x≥0
x≤y
x+2y≤3
则z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足条件
3x+y-5≤0
x+2y-5≤0
x≥0,y≥0
,若目标函数z=ax+y仅在点P(1,2)处取得最大值,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案