【题目】给出以下四个结论: ①函数 的对称中心是(﹣1,2);
②若关于x的方程 没有实数根,则k的取值范围是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的充分不必要条件;
④若 的图象向右平移φ(φ>0)个单位后为奇函数,则φ最小值是 .
其中正确的结论是 .
【答案】①
【解析】解:①函数 = +2,其图象由反比例函数y= 的图象向左平移两单位,再向上平移2个单位得到,故图象的对称中心是(﹣1,2),故①正确;②x∈(0,1)时,x ∈(﹣∞,0),若关于x的方程 没有实数根,则k的取值范围是k≥0,故②错误;③在△ABC中,“bcosA=acosB”“sinBcosA=sinAcosB”“sin(A﹣B)=0”“A=B”“△ABC为等腰三角形”,“bcosA=acosB”是“△ABC为等边三角形”的必要不充分条件,故③错误;④若 的图象向右平移φ(φ>0)个单位后为奇函数,﹣2φ﹣ =kπ,k∈Z,当k=﹣1时,φ最小值是 ,故④错误;所以答案是:①
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点. (Ⅰ)求a的取值范围;
(Ⅱ)设x1 , x2是f(x)的两个零点,证明x1+x2<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P( ,1)和椭圆C: + =1.
(1)设椭圆的两个焦点分别为F1 , F2 , 试求△PF1F2的周长及椭圆的离心率;
(2)若直线l: x﹣2y+m=0(m≠0)与椭圆C交于两个不同的点A,B,设直线PA与PB的斜率分别为k1 , k2 , 求证:k1+k2=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)当a=0时,求f(x)在点(1,f(1))处的切线方程;
(2)是否存在实数a,当0<x≤2时,函数f(x)图象上的点都在 所表示的平面区域(含边界)?若存在,求出a的值组成的集合;否则说明理由;
(3)若f(x)有两个不同的极值点m,n(m>n),求过两点M(m,f(m)),N(n,f(n))的直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 经过点M(﹣2,﹣1),离心率为 .过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q. (I)求椭圆C的方程;
(II)试判断直线PQ的斜率是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1 , 且这个几何体的体积为10. (Ⅰ)求棱AA1的长;
(Ⅱ)若A1C1的中点为O1 , 求异面直线BO1与A1D1所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com