精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.直线
x=2+
3
t
y=1+t
(t为参数)与曲线ρ=2asinθ(θ为参数且a>0)相切,则a=
 
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:把直线l的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程,利用直线与圆相切的性质即可得出.
解答: 解:直线
x=2+
3
t
y=1+t
(t为参数),化为x-
3
y+
3
-2
=0,
曲线ρ=2asinθ(θ为参数且a>0)即ρ2=2aρsinθ,化为x2+y2-2ay=0,配方为x2+(y-a)2=a2,可得圆心C(0,a),半径r=a.
∵直线与圆相切,∴
|0-
3
a+
3
-2|
2
=a,化为
3
a-
3
+2
=±2a,a>0,解得a=1.
故答案为:1.
点评:本题考查了把参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆相切的性质、点到直线的距离公式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=a+bi(a,b∈R),若
z
=
2+4i
k
-3aki(k∈R),求:
(1)2a+b的值;
(2)|z-i|+|z+i|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2
2x+1
,g(x)=
1
f(x)-a

(1)若函数f(x)为奇函数,求a的值;
(2)若关于x的方程g(2x)-a•g(x)=0有唯一的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC中,C=30°,a+b=1,则△ABC面积S的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(-
π
3
)的值是(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:a,b,c均为正实数,则(a+b+c)(
1
a+b
+
1
c
)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方形ABCD中,已知AB=4,BC=2,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离小于2的概率为(  )
A、
π
8
B、
π
4
C、1-
π
8
D、1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

小波以游戏方式决定是去打球,唱歌还是去下棋,游戏规则为以O为顶点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取不同的两点得到∠Ai0Aj(0°<∠AiOAj≤180°)i,j∈{1,2,3,4,5,6}若∠AiOAj为钝角或平角就去打球,若∠AiOAj为直角就去唱歌,若∠AiOAj为锐角就去下棋,则小波去打球的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x2+ax-a+1),当a>0时,f(x)在[2,+∞)上有反函数.
 
(判断对错)

查看答案和解析>>

同步练习册答案