精英家教网 > 高中数学 > 题目详情
若△ABC中,C=30°,a+b=1,则△ABC面积S的最大值是
 
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:由条件可得△ABC的面积S=
1
2
ab•sinC,再利用正弦函数的值域、基本不等式求得S的最大值.
解答: 解:在△ABC中,∵C=30°,a+b=1,
∴△ABC的面积S=
1
2
ab•sinC=
1
2
ab•sin30°=
1
4
ab≤
1
4
×(
a+b
2
)2=
1
4
×(
1
2
)2=
1
16
.当且仅当a=b=
1
2
时取等号,
故答案为:
1
16
点评:本题主要考查三角形的面积,基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
4
)(ω>0)的一条对称轴是x=
π
8
,则函数f(x)的最小正周期不可能是(  )
A、
π
9
B、
π
5
C、π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为公比q>1的等比数列,若a2012和a2013是方程4x2-8x+3=0的两个根,则a2013+2a2014+a2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,点O1为上底面A1C1的中心,若
AO1
=
AA1
+x
AB
+y
AD
,则x,y的值是(  )
A、x=
1
2
,y=1
B、x=1,y=
1
2
C、x=
1
2
y=
1
2
D、x=1,y=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
在基底{
a
b
c
}下的坐标为(2,1,-1),则
p
在基底{
a
+
b
a
-
b
c
}下的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

想要得到函数y=cos2x的图象,只需将函数y=cos(
π
3
-2x)(  )而得到.
A、向右平移
π
6
个单位
B、向右平移
π
3
个单位
C、向左平移
π
6
个单位
D、向左平
π
3
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.直线
x=2+
3
t
y=1+t
(t为参数)与曲线ρ=2asinθ(θ为参数且a>0)相切,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|g(x)-a|+2a+
2
3
,x∈[0,24],其中g(x)=
1
2
sin(
π
4
x),x∈[0,2]
1
x
,x∈(2,24]
,a是与气象有关的参数,且a∈[0,
1
2
],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=g(x),求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:

若三棱锥的三个侧面两两垂直,且侧棱长均为
3
,则其外接球的表面积为(  )
A、18π
B、36π
C、9π
D、
2

查看答案和解析>>

同步练习册答案