精英家教网 > 高中数学 > 题目详情
(2012•湖北模拟)如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.
(Ⅰ)求证:AD⊥平面PQB;
(Ⅱ)点M在线段PC上,PM=tPC,试确定t的值,使PA∥平面MQB;
(Ⅲ)若PA∥平面MQB,平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.
分析:(Ⅰ)证明AD⊥BQ,AD⊥PQ,利用线面垂直的判定,可得AD⊥平面PQB.;
(Ⅱ)利用PA∥平面MQB,可得MN∥PA,利用比例关系,即可得到结论;
(Ⅲ)证明PQ⊥平面ABCD,建立空间直角坐标系,求出平面MQB的法向量
n
=(
3
,0,1)
,取平面ABCD的法向量
m
=(0,0,1),利用向量的夹角公式,即可求得二面角M-BQ-C的大小.
解答:(Ⅰ)证明:连接BD.
因为四边形ABCD为菱形,∠BAD=60°,所以△ABD为正三角形.
又Q为AD中点,所以AD⊥BQ.
因为PA=PD,Q为AD的中点,所以AD⊥PQ.
又BQ∩PQ=Q,所以AD⊥平面PQB.
(Ⅱ)解:当t=
1
3
时,PA∥平面MQB.
下面证明:连接AC交BQ于N,连接MN.
因为AQ∥BC,所以
AN
NC
=
AQ
BC
=
1
2

因为PA∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,
所以MN∥PA,
所以
PM
MC
=
AN
NC
=
1
2
,所以PM=
1
3
PC
,即t=
1
3
. (9分)
(Ⅲ)解:因为PQ⊥AD,平面PAD⊥平面ABCD,交线为AD,所以PQ⊥平面ABCD.
以Q为坐标原点,分别以QA,QB,QP所在的直线为x,y,z轴,建立如图所示的空间直角坐标系Q-xyz.
由PA=PD=AD=2,则有A(1,0,0),B(0,
3
,0)
P(0,0,
3
)

设平面MQB的法向量为
n
=(x,y,z),由
PA
=(1,0,-
3
)
QB
=(0,
3
,0)
n
PA
n
QB
,可得
x-
3
z=0
3
y=0

令z=1,得x=
3
,y=0

所以
n
=(
3
,0,1)
为平面MQB的一个法向量.  
取平面ABCD的法向量
m
=(0,0,1),
cos<
m
n
>=
m
n
|
m
||
n
|
=
1
2×1
=
1
2
,故二面角M-BQ-C的大小为60°.
点评:本题考查线面垂直、线面平行,考查面面角,正确运用线面垂直、线面平行的判定与性质,利用向量的夹角公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一个顶点到两个焦点之间的距离分别为3+2
2
3-2
2

(1)求椭圆的方程;
(2)如果直线x=t(t∈R)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设Sn是等比数列{an}的前n项和,若S1,2S2,3S3成等差数列,则公比q等于
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)函数f(x)=aex,g(x)=lnx-lna,其中a为正常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

同步练习册答案