【题目】过双曲线
的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是
的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为
时,求直线l的方程;
(3)求证:
是一个定值.
科目:高中数学 来源: 题型:
【题目】已知
定义在实数集
上的函数,把方程
称为函数
的特征方程,特征方程的两个实根
,![]()
称为
的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)求
表达式;
(3)把函数
,
的最大值记作
、最小值记作
,令
,若
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足
(其中
,a为正常数).已知生产该产品还需投入成本
万元(不含促销费用),产品的销售价格定为
元/件,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,
(
为圆柱的高,为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为
千元.设该储油罐的建造费用为
千元.
![]()
(1) 写出
关于
的函数表达式,并求该函数的定义域;
(2) 若预算为
万元,求所能建造的储油罐中
的最大值(精确到
),并求此时储油罐的体积
(单位: 立方米,精确到
立方米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,对于点
、直线
,我们称
为点
到直线
的方向距离.
(1)设椭圆
上的任意一点
到直线
,
的方向距离分别为
、
,求
的取值范围.
(2)设点
、
到直线
的方向距离分别为
、
,试问是否存在实数
,对任意的
都有
成立?若存在,求出
的值;不存在,说明理由.
(3)已知直线
和椭圆
,设椭圆
的两个焦点
,
到直线
的方向距离分别为
、
满足
,且直线
与
轴的交点为
、与
轴的交点为
,试比较
的长与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若动点
到定点
的距离与到定直线
:
的距离之比为
,求证:动点
的轨迹是椭圆;
(2)设(1)中的椭圆短轴的上顶点为
,试找出一个以点
为直角顶点的等腰直角三角形
,并使得
、
两点也在椭圆上,并求出
的面积;
(3)对于椭圆
(常数
),设椭圆短轴的上顶点为
,试问:以点
为直角顶点,且
、
两点也在椭圆上的等腰直角三角形
有几个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,定义椭圆C的“相关圆”E为:
.若抛物线
的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l 与椭圆
交于A,B两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com