精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{{{\;}_{-2-\sqrt{x-4},x≥1}^{{{({x+1})}^2},x<1}}$,则f[f(5)]=(  )
A.-3B.4C.9D.16

分析 直接利用分段函数,由里及外逐步求解函数值即可.

解答 解:函数f(x)=$\left\{{{\;}_{-2-\sqrt{x-4},x≥1}^{{{({x+1})}^2},x<1}}$,则f(5)=-2-$\sqrt{5-4}$=-3.
f[f(5)]=f(-3)=(-3+1)2=4.
故选:B.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{2x+1,x∈[-2,2]}\\{1+{x}^{2},x∈(2,4]}\end{array}\right.$,若${∫}_{k}^{3}$f(x)dx=$\frac{40}{3}$,则k的值为(  )
A.0B.0或-1C.0或1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将ρcos(θ-$\frac{π}{4}$)=4$\sqrt{2}$化为直角坐标系方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=$\left\{\begin{array}{l}{kx+1(-2≤x<0)}\\{2sin(wx+φ)(0≤x≤\frac{8π}{3})}\end{array}\right.$的图象如图所示,试求k,ω,φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数的定义域和值域:y=$\frac{1}{\sqrt{{2}^{x}-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是某个闭合电路的一部分,每个元件正常工作的概率为$\frac{1}{2}$,则从A到B这部分电路能正常工作的概率为(  )
A.$\frac{27}{32}$B.$\frac{55}{64}$C.$\frac{115}{128}$D.$\frac{49}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,c=2$\sqrt{2}$,a>b,tanA+tanB=5,tanA•tanB=6,试求a,b及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=$\frac{x-2}{x+1}$.
(1)作出函数的图象;
(2)讨论函数的单调性,并写出它的渐近线方程;
(3)写出图象的对称中心;
(4)指出函数的图象y=$\frac{x-2}{x+1}$是由y=-$\frac{3}{x}$经过怎样的平移变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解下列分式不等式:
(1)$\frac{3x+1}{2x-1}$>0
(2)$\frac{1-2x}{x+1}$>0
(3)$\frac{x-1}{x}$≥2
(4)$\frac{3x-5}{2x-3}$≤2.

查看答案和解析>>

同步练习册答案