精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,AA1=4,G为BB1的中点,则点G到平面A1BCD1的距离为(  )
分析:过B1在平面AA1B1B内作B1H⊥A1B,根据线面垂直的判定与性质,证出B1H⊥平面A1BCD1,可得B1到平面A1BCD1的距离B1H=
1
2
×4
2
=2
2
,G为BB1的中点,点G到平面A1BCD1的距离等于B1到平面A1BCD1的距离的一半.
解答:解:∵B1B∩平面A1BCD1=B,G为BB1的中点,点G到平面A1BCD1的距离等于B1到平面A1BCD1的距离的一半.
过B1在平面AA1B1B内作B1H⊥A1B,则H为A1B中点.又因为D1A1⊥平面AA1B1B,所以D1A1⊥B1H,D1A1∩A1B=A1B,∴B1H⊥平面A1BCD1
正方体棱长为4,所以B1H=
1
2
×4
2
=2
2
,点G到平面A1BCD1的距离为
2

故选C
点评:本题考查在正方体中证明线面垂直,并求点到平面的距离.着重考查了正方体的性质、线面垂直的判定与性质和点面距离求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案