| A. | 75 | B. | 100 | C. | 120 | D. | 130 |
分析 求出(2+x)5的展开式中含有x3的项和含有x2的项,与第一个式子作积得答案.
解答 解:二项式(2+x)5的通项${T}_{r+1}={C}_{5}^{r}{2}^{5-r}{x}^{r}={2}^{5-r}{C}_{5}^{r}{x}^{r}$.
其中含有x3的项为${2}^{2}{C}_{5}^{2}{x}^{3}=40{x}^{3}$,含有x2的项为${2}^{3}{C}_{5}^{2}{x}^{2}=80{x}^{2}$,
∴在(1+x)(2+x)5的展开式中,x3的系数为1×40+1×80=120.
故选:C.
点评 本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$ | B. | $\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$ | C. | $\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$ | D. | $\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com