精英家教网 > 高中数学 > 题目详情
16.如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=$\frac{π}{4}$,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD.
(2)求三棱锥N-CDM的体积.

分析 (1)取AD中点E,连结ME,NE,推导出平面MNE∥平面CDO,由此能证明直线MN∥平面OCD.
(2)三棱锥N-CDM的体积VN-CDM=VM-CDN,由此能求出结果.

解答 证明:(1)取AD中点E,连结ME,NE,
∵M为OA的中点,N为BC的中点,
∴ME∥OD,NE∥CD,
∵ME∩NE=E,OD∩CD=D,ME,NE?平面MNE,OD,CD?平面CDO,
∴平面MNE∥平面CDO,
∵MN?平面MNE,∴直线MN∥平面OCD.
解:(2)∵OA⊥底面ABCD,OA=2,M为OA的中点,
∴AM⊥平面CDN,且AM=1,
∵底面ABCD是边长为1的菱形,∠ABC=$\frac{π}{4}$,
∴${S}_{△CDN}=\frac{1}{2}×\frac{1}{2}×1×sin135°$=$\frac{\sqrt{2}}{8}$,
∴三棱锥N-CDM的体积VN-CDM=VM-CDN=$\frac{1}{3}×{S}_{△CDN}×AM$=$\frac{1}{3}×\frac{\sqrt{2}}{8}×1$=$\frac{\sqrt{2}}{24}$.

点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.${({\frac{2+2i}{1-i}})^3}$=(  )
A.8B.-8C.8iD.-8i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图表示一位骑自行车者与一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图中信息,判断以下说法正确的序号为(  )
①骑自行车者比骑摩托车者早出发3小时,晚到1小时;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者出发后1.5小时后追上了骑自行车者.
A.①③B.①②C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{3}$ax3+ax2+x+2存在单调递减区间,则a的取值范围是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,$\overrightarrow{BA}•\overrightarrow{CA}=8$,$\overrightarrow{BF}•\overrightarrow{CF}=-2$则$\overrightarrow{BE}•\overrightarrow{CE}$的值是$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC的三个内角A,B,C所对的边分别是a,b,c,且3bcosA-3acosB=c,则下列结论正确的是(  )
A.tanB•tanA=2BB.tanA=2tanBC.tanB=2tanAD.tanA+tanB=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题P::直线mx-y+2=0与圆x2+y2-2x-4y+$\frac{19}{4}$=0有两个交点;命题:$q:?{x_0}∈[{-\frac{π}{6},\frac{π}{4}}],2sin({2{x_0}+\frac{π}{6}})+2cos2{x_0}$≤m.
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{6}}}{3}$,过点$M(-\sqrt{6},-1)$.
(1)求椭圆C的标准方程;
(2)设G,H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH,试问:是否存在以原点O为圆心的定圆始终与直线GH相切?若存在,请求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案