分析 (1)取AD中点E,连结ME,NE,推导出平面MNE∥平面CDO,由此能证明直线MN∥平面OCD.
(2)三棱锥N-CDM的体积VN-CDM=VM-CDN,由此能求出结果.
解答 证明:(1)取AD中点E,连结ME,NE,![]()
∵M为OA的中点,N为BC的中点,
∴ME∥OD,NE∥CD,
∵ME∩NE=E,OD∩CD=D,ME,NE?平面MNE,OD,CD?平面CDO,
∴平面MNE∥平面CDO,
∵MN?平面MNE,∴直线MN∥平面OCD.
解:(2)∵OA⊥底面ABCD,OA=2,M为OA的中点,
∴AM⊥平面CDN,且AM=1,
∵底面ABCD是边长为1的菱形,∠ABC=$\frac{π}{4}$,
∴${S}_{△CDN}=\frac{1}{2}×\frac{1}{2}×1×sin135°$=$\frac{\sqrt{2}}{8}$,
∴三棱锥N-CDM的体积VN-CDM=VM-CDN=$\frac{1}{3}×{S}_{△CDN}×AM$=$\frac{1}{3}×\frac{\sqrt{2}}{8}×1$=$\frac{\sqrt{2}}{24}$.
点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①② | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | tanB•tanA=2B | B. | tanA=2tanB | C. | tanB=2tanA | D. | tanA+tanB=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com