【题目】已知椭圆
的左、右焦点分别为
,
,直线
(
)与椭圆
交于
,
两点(点
在
轴的上方).
(1)若
,求
的面积;
(2)是否存在实数
使得以线段
为直径的圆恰好经过坐标原点
?若存在,求出
的值;若不存在,请说明理由.
【答案】(1)
(2)存在实数
,使得以线段
为直径的圆恰好经过坐标原点![]()
【解析】
(1)由椭圆方程求得
,得
,由直线方程与椭圆方程联立可解得交点坐标,当然这里只要得出
点的纵坐标,即可求得三角形面积;
(2)这类问题,都是假设存在实数
使得以线段
为直径的圆恰好经过坐标原点
,则有
.设
,
,从而有
,把直线方程与椭圆方程联立消元后可得
,代入
,求得
值,说明存在,求不出
值说明假设错误,不存在。
(1)设椭圆的半焦距为
,因为
,
,
,所以
,
,
,
联立
化简得
,解得
或
,又点
在
轴的上方,所以
,所以
,
所以
的面积为
.
(2)假设存在实数
使得以线段
为直径的圆恰好经过坐标原点
,则有
.
设
,
,
联立
消去
得
,(*)
则
,
.
由
,所以
,即
,
整理得
,
所以
,解得
.
经检验
时(*)中
,
所以存在实数
,使得以线段
为直径的圆恰好经过坐标原点
.
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,
且满足:![]()
(1)证明:
是等比数列,并求数列
的通项公式.
(2)设
,若数列
是等差数列,求实数
的值;
(3)在(2)的条件下,设
记数列
的前
项和为
,若对任意的
存在实数
,使得
,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根据以上数据,估计该企业得分大于45分的员工人数;
(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女员工 | 16 | ||
男员工 | 14 | ||
合计 | 30 |
(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
P(K2 | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何—个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,小球编号的最大值设为
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某IT从业者绘制了他在26岁~35岁(2009年~2018年)之间各年的月平均收入(单位:千元)的散点图:
![]()
(1)由散点图知,可用回归模型
拟合
与
的关系,试根据附注提供的有关数据建立
关于
的回归方程
(2)若把月收入不低于2万元称为“高收入者”.
![]()
试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?
附注:①.参考数据:
,
,
,
,
,
,
,其中
,取
,![]()
②.参考公式:回归方程
中斜率
和截距
的最小二乘估计分别为:
,![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③.
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的焦点是
,
、
是曲线
上不同两点,且存在实数
使得
,曲线
在点
、
处的两条切线相交于点
.
(1)求点
的轨迹方程;
(2)点
在
轴上,以
为直径的圆与
的另一交点恰好是
的中点,当
时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三棱锥
与
拼接得到如图所示的多面体,其中
,
,
,
分别为
,
,
,
的中点,
.
![]()
(1)当点
在直线
上时,证明:
平面
;
(2)若
与
均为面积为
的等边三角形,求该多面体体积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com