精英家教网 > 高中数学 > 题目详情
对a、b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{|x+1|,|2x+5|}

(1)求f(0),f(-3);(2)作出f(x)的图象,写出f(x)的单调区间.
分析:根据题中所给条件通过比较|x+1|、|2x+5|哪一个更大,先画出f(x)的图象,再求出f(x)当x=0或x=-3时的函数值,最后结合图象写出f(x)的单调区间.
解答:精英家教网解:根据题意,
max{|x+1|,|2x+5|}表示|x+1|,|2x+5|中的较大者,
据此画出函数f(x)的图象,
由图求得:
(1)f(0)=5;
(2)f(-3)=|-3+1|=2;
(3)f(x)的单调区间:(-∞,-2),(-2,+∞).
点评:本题主要考查函数的最值及其几何意义.这种先给出定义,让根据条件求解析式是经常考到点.数形结合是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对a,b∈R,记max{a,b}=
a,a≥b
b,a<b
函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对a,b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{x2,2x+3}(x∈R)的最小值是
1
1
;单调递减区间为
(-∞,-1]
(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

对a、b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{|x+1|,|x-2|}(x∈R).
(1)作出f(x)的图象,并写出f(x)的解析式;
(2)若函数h(x)=x2-λf(x)在(-∞,-1]上是单调函数,求λ的取值范围.
(3)当x∈[1,+∞)时,函数h(x)=x2-λf(x)的最小值为2,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对a,b∈R,记max{a,b}=
a,a≥b
b,a<b
,函数f(x)=max{x2,2x+3,-x+1}(x∈R)的最小值是
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对a,b∈R,记max(a,b)=
a,a≥b
b,a<b
,函数f(x)=max(|x+1|,-x2+1)的最小值是
0
0

查看答案和解析>>

同步练习册答案