精英家教网 > 高中数学 > 题目详情
11.在区间[0,3]上随机选取一个数x,则x≤1的概率为$\frac{1}{3}$.

分析 直接由区间长度比得答案.

解答 解:区间[0,3]的长度为3,
满足x≤1所占的区间长度为1,
由几何概型概率计算公式可得,x≤1的概率为$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查几何概型,关键是明确测度比为区间长度比,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设有四个命题,其中真命题的个数是(  )
①有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;
②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;
③用一个面去截棱锥,底面与截面之间的部分叫棱台;
④侧面都是长方形的棱柱叫长方体.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lnx,x≥1}\end{array}\right.$,若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A,B,C三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如表(单位:小时).
A
66.5 7 
B
678 
C
5678
(1)试估计C班学生人数;
(2)从A班和B班抽出来的学生中各选一名,记A班选出的学生为甲,B班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“2x>2”是“(x-2)(x-4)<0”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点P为圆x2+y2=4上一动点,过点P作x轴的垂线,垂足为Q(P与Q不重合),M为线段PQ中点.
(1)求点M的轨迹C的方程;
(2)直线y=kx交(1)中轨迹C于A,B两点,当直线MA,MB斜率KMA,KMB都存在时,求证:KMA•KMB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,则线段BC的长的取值范围为[$\sqrt{6}-\sqrt{2}$,$\sqrt{6}+\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在一个长方体的三条棱长分别为3、8、9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.近年来我国电子商务行业迎来蓬勃发展新机遇,2016年双11期间,某网络购物平台推销了A,B,C三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了A,B,C三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对A,B,C三件商品抢购成功的概率分别为a,b,$\frac{1}{4}({a>b})$,已知三件商品都被抢购成功的概率为$\frac{1}{24}$,至少有一件商品被抢购成功的概率为$\frac{3}{4}$.
(1)求a,b的值;
(2)若购物平台准备对抢购成功的A,B,C三件商品进行优惠减免,A商品抢购成功减免2百元,B商品抢购成功减免4比百元,C商品抢购成功减免6百元.求该名网购者获得减免总金额(单位:百元)的分别列和数学期望.

查看答案和解析>>

同步练习册答案