精英家教网 > 高中数学 > 题目详情

【题目】定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称D上的有界函数,其中M称为函数的上界已知函数

,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

若函数上是以3为上界的有界函数,求实数a的取值范围.

【答案】1)见解析;(2

【解析】

(1)a1时,f(x)1

因为f(x)(0)上递减,所以f(x)>f(0)3,即f(x)(0)的值域为(3,+∞)

故不存在常数M>0,使|f(x)|≤M成立,

所以函数f(x)(0)上不是有界函数.

(2)由题意知,|f(x)|≤3[0,+∞)上恒成立.

3≤f(x)≤3,-4≤a·≤2,所以-4·2x≤a≤2·2x[0,+∞)上恒成立.所以≤a≤

2xth(t)=-4tp(t)2t,由x∈[0,+∞)t≥1,设1≤t1<t2h(t1)h(t2)>0p(t1)p(t2)<0,所以h(t)[1,+∞)上递减,p(t)[1,+∞)上递增,h(t)[1,+∞)上的最大值为h(1)=-5p(t)[1,+∞)上的最小值为p(1)1,所以实数a的取值范围为[51]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x+1)﹣ (a>1).
(1)讨论f(x)的单调性;
(2)设a1=1,an+1=ln(an+1),证明: <an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.

所有正确结论的序号是(
A.①②
B.③④
C.①②③
D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数, 函数 .

(1)求函数的单调区间和最小值;

(2)讨论 的大小关系;

(3)求的取值范围,使得 对任意的都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,函数处的切线互相垂直,求的值;

(2)当函数在定义域内不单调时,求证:

(3)是否存在实数,使得对任意,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,函数处的切线互相垂直,求的值;

(2)当函数在定义域内不单调时,求证:

(3)是否存在实数,使得对任意,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形所在的平面与平面垂直,的交点,,且

(Ⅰ)求证:平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

同步练习册答案