【题目】定义在D上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是D上的有界函数,其中M称为函数
的上界
已知函数![]()
当
,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
若函数
在
上是以3为上界的有界函数,求实数a的取值范围.
【答案】(1)见解析;(2)![]()
【解析】
(1)当a=1时,f(x)=1+![]()
因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),
故不存在常数M>0,使|f(x)|≤M成立,
所以函数f(x)在(-∞,0)上不是有界函数.
(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.
-3≤f(x)≤3,-4-
≤a·
≤2-
,所以-4·2x-
≤a≤2·2x-
在[0,+∞)上恒成立.所以
≤a≤
,
设2x=t,h(t)=-4t-
,p(t)=2t-
,由x∈[0,+∞)得t≥1,设1≤t1<t2,h(t1)-h(t2)=
>0,p(t1)-p(t2)=
<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1].
科目:高中数学 来源: 题型:
【题目】下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点(
);
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数
时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数
就越接近于
.
其中真命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.![]()
所有正确结论的序号是( )
A.①②
B.③④
C.①②③
D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(10分)四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.
![]()
(1)求四面体ABCD的体积;
(2)证明:四边形EFGH是矩形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(1)当
时,函数
,
在
处的切线互相垂直,求
的值;
(2)当函数
在定义域内不单调时,求证:
;
(3)是否存在实数
,使得对任意
,都有函数
的图象在
的图象的下方?若存在,请求出最大整数
的值;若不存在,请说理由.(参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
.
(1)当
时,函数
,
在
处的切线互相垂直,求
的值;
(2)当函数
在定义域内不单调时,求证:
;
(3)是否存在实数
,使得对任意
,都有函数
的图象在
的图象的下方?若存在,请求出最大整数
的值;若不存在,请说理由.(参考数据:
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com