精英家教网 > 高中数学 > 题目详情
(Ⅰ)已知x+x-1=4,求x2+x-2的值;
(Ⅱ)计算2
3
×
31.5
×
612
的值.
分析:(Ⅰ)把已知条件平方,再化简即可得解
(Ⅱ)把每个根式都化成指数幂再根据指数运算法则化简即可
解答:解:(Ⅰ)∵(x+x-12=x2+x-2+2=16
∴x2+x-2=16-2=14
∴x2+x-2的值为14
(Ⅱ)原式=3
1
2
×(
3
2
)
1
3
×(22×3)
1
6
=3
1
2
×3
1
3
×2-
1
3
×2
1
3
×3
1
6
=21-
1
3
+
1
3
×3
1
2
+
1
3
+
1
6
=2×3=6

2
3
×
31.5
×
612
的值为6
点评:本题考查指数运算,要熟练掌握指数运算法则,同时要注意根式与指数幂的互化.属简单题
练习册系列答案
相关习题

科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学理科试题 题型:044

设h(x)=,x∈[,5],其中m是不等于零的常数,

(1)写出h(4x)的定义域;

(2)求h(x)的单调递增区间;

(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,设,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;

查看答案和解析>>

科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学文科试题 题型:044

设h(x)=x+,x∈[,5],其中m是不等于零的常数,

(1)m=1时,直接写出h(x)的值域

(2)求h(x)的单调递增区间;

(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x2,g(x)为一次函数,且为增函数,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=x2+2x,求f(x);

(4)某工厂生产一种机器的固定成本为5 000元,且每生产100部,需要增加投入2 500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为H(x)=500x-x2,其中x是产品售出的数量,且0≤x≤500.若x为年产量,y表示利润,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x,h(x))处的切线方程为l:y=g(x),当x≠x时,若在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x,h(x))处的切线方程为l:y=g(x),当x≠x时,若在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案