精英家教网 > 高中数学 > 题目详情
过椭圆的左焦点F的直线交椭圆于点A、B,交其左准线于点C,
,则此直线的斜率为                     
A、   B、   C、     D、 
B
先求出焦点坐标和准线方程,利用直角三角形相似求出点B到左准线的距离为h,求出点B的横坐标,再把点B的横坐标代入椭圆的方程求得B的纵坐标,得到点B的坐标,由斜率公式求出直线I的斜率.
解答:解:椭圆的左焦点F(-2,0),左准线方程为 x=-
=3,且同向,
=3,设|FB|=k,则|BC|=3k,设点B到左准线的距离为h,由三角形全等得=
,h=,∴xB=-,∴B(-
由点B、点F的坐标,用两点表示的斜率公式求出直线I的斜率为±
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
已知椭圆的左右焦点分别.在椭圆中有一内接三角形,其顶点的坐所在直线的斜率为
(Ⅰ)求椭圆的方程;
(Ⅱ)当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
设函数).
(Ⅰ)当时,求的极值;
(Ⅱ)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上任意两点,若,则乘积的最小值为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
在平面直角坐标系中,已知点,点在直线上运动,过点垂直的直线和的中垂线相交于点
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设点是轨迹上的动点,点轴上,圆为参数)内切于,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若为钝角三角形,则该双曲线的离心率的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知动圆过点,且与相内切.
(1)求动圆的圆心的轨迹方程;
(2)设直线(其中与(1)中所求轨迹交于不同两点D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知如图,椭圆方程为.P为椭圆上的动点,

F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角
平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(1)求M点的轨迹T的方程;(2)已知
试探究是否存在这样的点是轨迹T内部的整点
(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积
若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦点在x轴上,两条渐近线方程为,则双曲线的离心率为(   )
A.5B.C.D.

查看答案和解析>>

同步练习册答案