精英家教网 > 高中数学 > 题目详情
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A、若m⊥n,m⊥α,n∥β,则α∥β
B、若m∥α,n∥β,α∥β则m∥n
C、若m∥n,m∥α,n∥β,则α∥β
D、若m⊥α,n∥β,α∥β,则m⊥n
考点:命题的真假判断与应用
专题:空间位置关系与距离
分析:本题考查平面的基本性质及推论,考察空间点线面的位置关系,要依据4个公理以及公理2的3个推论判断,首先画出图象,然后利用图象判断.否定时举出反例即可,使用排除法.
解答: 解:A、m⊥n,m⊥α,n∥β,如图,α与β相交,故A错误,
   B、若m∥α,n∥β,α∥β,如图m,n相交,故B错误,
   C、若m∥n,m∥α,n∥β, α∥β,故C错误,
   D、若m⊥α,α∥β,则m⊥β,又n∥β,则m⊥n,正确.
故选:D.
点评:解此类题,关键是对题中命题所涉及的相关知识掌握理解,且能根据它们进行娴熟的推理判断得出命题的正误判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2xlnx+x2-ax+3,其中a∈R.
(Ⅰ)设曲线y=f(x)在点(1,f(1))处的切线与直线2x-y+1=0平行,求a的值;
(Ⅱ)若f(x)≤0在x∈[
1
e
,e]
(e=2.718…)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+px+q,|f(x)|>2在区间(1,5)无解,求所有的有序实数对(p,q).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰梯形ABCD中,AB∥CD,且AB>CD.设以A,B为焦点且过点D的双曲线的离心率为2,以C,D为焦点且过点A的椭圆的离心率e等于(  )
A、
1
2
B、
2
2
C、
3
2
D、
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M经过第一象限,与y轴相切于点O(0,0),且圆M上的点到x轴的最大距离为2,过点P(0,-1)作直线l.
(1)求圆M的标准方程;
(2)当直线l与圆M相切时,求直线l的方程;
(3)当直线l与圆M相交于A、B两点,且满足向量
PA
PB
,λ∈[2,+∞)时,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,极点为A,已知“葫芦”型封闭曲线Ω由圆弧ACB和圆弧BDA组成.已知B(4,
π
2
),C(2
2
π
4
),D(4
2
4

(1)求圆弧ACB和圆弧BDA的极坐标方程;
(2)求曲线Ω围成的区域面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为l的正方体ABCD-ABCD的面对角线AB上存在一点P使得AP+DP取得最小值,则此最小值为(  )
A、2
B、
6
+
2
2
C、2+
2
D、
2+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
x-3y+5≤0
2x-y≥0
x+2y-10≤0
,过点P的直线l与圆C:x2+y2=36相交于A、B两点,则弦AB长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程ln(x+1)-
2
x
=0,(x>0)的根存在的大致区间是(  )
A、(0,1)
B、(1,2)
C、(2,e)
D、(3,4)

查看答案和解析>>

同步练习册答案