精英家教网 > 高中数学 > 题目详情
14.若X是离散型随机变量,P(X=x1)=$\frac{2}{3}$,P(X=x2)=$\frac{1}{3}$,且x1<x2,又已知E(X)=$\frac{4}{3}$,D(X)=$\frac{2}{9}$,则x1+x2的值为(  )
A.$\frac{5}{3}$B.$\frac{7}{3}$C.3D.$\frac{11}{3}$

分析 根据数学期望和方差公式列方程组解出x1,x2

解答 解:∵E(X)=$\frac{4}{3}$,D(X)=$\frac{2}{9}$,
∴$\left\{\begin{array}{l}{\frac{2}{3}{x}_{1}+\frac{1}{3}{x}_{2}=\frac{4}{3}}\\{\frac{2}{3}({x}_{1}-\frac{4}{3})^{2}+\frac{1}{3}({x}_{2}-\frac{4}{3})^{2}=\frac{2}{9}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=1}\\{{x}_{2}=2}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{1}=\frac{5}{3}}\\{{x}_{2}=\frac{2}{3}}\end{array}\right.$(舍),
∴x1+x2=3.
故选C.

点评 本题考查概率和的求法,是中档题,解题时要认真审题,注意离散型随机变量的数学期望和方差的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.一组数据1,3,2,5,4的方差是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-3,-1<x≤0}\\{x,0<x≤1}\end{array}\right.$,若函数g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围为($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是②③.(填写所有正确命题的序号)
①若a∥b,a∥α,则b∥α; ②若a∥b,a?α,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设无穷等差数列{an}的前n项和为Sn,已知a1=1,S3=12.
(1)求a24与S7的值;
(2)已知m、n均为正整数,满足am=Sn.试求所有n的值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从5名男生和4名女生中选出4人去参加座谈会,问:
(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?
(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{$\frac{1}{n(n+1)}$}的前n项和为Sn,若Sn•Sn+1=$\frac{3}{4}$,则正整数n的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+2y-2=0交于A、B两点,|AB|=$\sqrt{5}$,且弦AB的中点的坐标为(m,$\frac{1}{2}$),求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有实数根的概率为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案