分析 由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.
解答
解:由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),
分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:
由图象可知f(1)=1,h(x)表示过定点A(-1,0)的直线,
当h(x)过(1,1)时,m=$\frac{1}{2}$,此时两个函数有两个交点,
此时满足条件的m的取值范围是0<m≤$\frac{1}{2}$,
当h(x)过(0,-2)时,h(0)=-2,解得m=-2,此时两个函数有两个交点,
当h(x)与f(x)相切时,两个函数只有一个交点,此时 $\frac{1}{x+3}$x-3=m(x+1)即m(x+1)2+3(x+1)-1=0,
当m=0时,只有1解,当m≠0,由△=9+4m=0得m=-$\frac{9}{4}$,此时直线和f(x)相切,
∴要使函数有两个零点,则-$\frac{9}{4}$<m≤-2或0<m≤$\frac{1}{2}$.
故答案为:($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].
点评 本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{7}{3}$ | C. | 3 | D. | $\frac{11}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,8] | B. | (0,8] | C. | (-∞,0]∪[8,+∞) | D. | (-∞,0)∪(8,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com