精英家教网 > 高中数学 > 题目详情
16.如图,直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB⊥AC,AB=AC=2,AA1=3,M是侧棱CC1上一点.
(1)若BM⊥A1C,求$\frac{{{C_1}M}}{MC}$的值;
(2)若MC=2,求直线BA1与平面ABM所成角的正弦值.

分析 (1)以A为坐标原点,以射线AB、AC、AA1分别为x、y、z轴建立空间直角坐标系,求出相关点的坐标,$\overrightarrow{BM}=({-2,2,h})$,$\overrightarrow{{A_1}C}=({0,2,-3})$,由BM⊥A1C得$\overrightarrow{BM}•\overrightarrow{{A_1}C}=0$,求出h,然后推出$\frac{{{C_1}M}}{MC}$的值.
(2)求出平面ABM的一个法向量,利用空间向量数量积求解直线BA1与平面ABM所成的角为θ的余弦函数值,即可求解直线BA1与平面ABM所成的角正弦值.

解答 解:(1)以A为坐标原点,以射线AB、AC、AA1
分别为x、y、z轴建立空间直角坐标系,…(1分)
如图所示,则B(2,0,0),A1(0,0,3),C(0,2,0),
设MC=h,则 M(0,2,h)$\overrightarrow{BM}=({-2,2,h})$,$\overrightarrow{{A_1}C}=({0,2,-3})$…(2分)
由BM⊥A1C得$\overrightarrow{BM}•\overrightarrow{{A_1}C}=0$,即2×2-3h=0
解得$h=\frac{4}{3}$,…(5分)
故$\frac{{{C_1}M}}{MC}=\frac{5}{4}$; …(7分)
(2)因为MC=2,所以M(0,2,2),$\overrightarrow{AB}=({2,0,0}),\overrightarrow{AM}=({0,2,2}),\overrightarrow{B{A_1}}=({-2,0,3})$
设平面ABM的一个法向量为$\vec n=({x,y,z})$,由$\left\{\begin{array}{l}{\vec n•\overrightarrow{AB}=0}\\{\vec n•\overrightarrow{AM}=0}\end{array}$得$\left\{\begin{array}{l}{x=0}\\{y+z=0}\end{array}$,
所以$\vec n=({0,1,-1})$,…(10分)
则cos$<\overrightarrow{n},\overrightarrow{B{A}_{1}}>$=$\frac{\overrightarrow{n}•\overrightarrow{B{A}_{1}}}{|\overrightarrow{n}||\overrightarrow{B{A}_{1}}|}$=$\frac{-3}{\sqrt{2}•\sqrt{13}}$=-$\frac{3\sqrt{26}}{26}$,…(14分)
设直线BA1与平面ABM所成的角为θ,所以sinθ=|cos$<\overrightarrow{n},\overrightarrow{B{A}_{1}}>$|=$\frac{3\sqrt{26}}{26}$,
所以直线BA1与平面ABM所成的角正弦值为$\frac{{3\sqrt{26}}}{26}$.…(16分).

点评 本题考查空间向量的数量积的应用,空间向量的垂直,以及线面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在△ABC中,D是边BC上一点,$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知一个口袋中装有黑球和白球共7个,这些球除颜色外完全相同,从中任取2个球都是白球的概率为$\frac{1}{7}$.现有甲、乙两人轮流、不放回地从口袋中取球,每次取1球,甲先取,乙后取,然后甲再取,…,直到口袋中的球取完为止.若取出白球,则记2分;若取出黑球,则记1分.每个球在每一次被取出是等可能的.用ξ表示甲、乙最终得分差的绝对值.
(1)求口袋中原有白球的个数;
(2)求随机变量ξ的概率分布和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一组数据1,3,2,5,4的方差是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式$\frac{2}{x+1}$<1的解集是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-x,则不等式f(x)>x的解集用区间表示为(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-3,-1<x≤0}\\{x,0<x≤1}\end{array}\right.$,若函数g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围为($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{$\frac{1}{n(n+1)}$}的前n项和为Sn,若Sn•Sn+1=$\frac{3}{4}$,则正整数n的值为6.

查看答案和解析>>

同步练习册答案