精英家教网 > 高中数学 > 题目详情
1.不等式$\frac{2}{x+1}$<1的解集是(-∞,-1)∪(1,+∞).

分析 问题转化为$\frac{x-1}{x+1}$>0,求出不等式的解集即可.

解答 解:∵$\frac{2}{x+1}$<1,
∴$\frac{x-1}{x+1}$>0,解得:x>1或x<-1,
故不等式的解集是(-∞,-1)∪(1,+∞),
故答案为:(-∞,-1)∪(1,+∞).

点评 本题考查了解分式不等式,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,圆O:x2+y2=a2与y轴正半轴交于点B,过点B的直线与椭圆E相切,且与圆O交于另一点A,若∠AOB=60°,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若角α的终边经过点(-4,3),则sinα的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}中,其前n项和为Sn,a2=4,S5=30.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足bn=$\frac{1}{S_n}$,求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB⊥AC,AB=AC=2,AA1=3,M是侧棱CC1上一点.
(1)若BM⊥A1C,求$\frac{{{C_1}M}}{MC}$的值;
(2)若MC=2,求直线BA1与平面ABM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),则cos($\frac{π}{3}$-θ)=$\frac{4\sqrt{3}-3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=2x(0<x<3)的值域为A,函数y=lg[-(x+a)(x-a-2)](其中a>0)的定义域为B.
(1)当a=4时,求A∩B;
(2)若A⊆B,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点(1,2)且与直线2x-y+1=0垂直的直线方程为x+2y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin15°+cos15°=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案