精英家教网 > 高中数学 > 题目详情
6.如图,在△ABC中,D是边BC上一点,$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

分析 (1)利用向量加法的三角形法则得出;
(2)由条件$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0可得$\overrightarrow{AB}•\overrightarrow{AD}$=0,结合(1)的结论得出$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AD}$,两边平方即可计算AC,再用余弦定理求出BC.

解答 解:(1)∵$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
∴$\overrightarrow{DC}$=$\frac{1}{2}$$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{AD}-\overrightarrow{AB}$),
∴$\overrightarrow{AC}$=$\overrightarrow{AD}+\overrightarrow{DC}$=$\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$.
(2)∵$\overrightarrow{AB}•\overrightarrow{BD}$+${\overrightarrow{AB}}^{2}$=$\overrightarrow{AB}•$($\overrightarrow{BD}+\overrightarrow{AB}$)=$\overrightarrow{AB}•\overrightarrow{AD}$=0,
∴$\overrightarrow{AD}•\overrightarrow{AC}$=$\overrightarrow{AD}$•($\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$)=$\frac{3}{2}$${\overrightarrow{AD}}^{2}$=$\frac{3}{2}$.
(3)∵$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$,
∴$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
∴${\overrightarrow{AD}}^{2}$=$\frac{1}{9}{\overrightarrow{AB}}^{2}$+$\frac{4}{9}{\overrightarrow{AC}}^{2}$+$\frac{4}{9}$$\overrightarrow{AB}•\overrightarrow{AC}$,
∵AB=3,AD=1,cos∠BAC=-$\frac{1}{3}$,
∴${\overrightarrow{AD}}^{2}$=1,${\overrightarrow{AB}}^{2}$=9,$\overrightarrow{AB}•\overrightarrow{AC}$=-AC,
∴1=1+$\frac{4}{9}$AC2-$\frac{4}{9}$AC,
解得AC=1.
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•AC•cosBAC=9+1-2×1×3×(-$\frac{1}{3}$)=12.
∴|$\overrightarrow{BC}$|=2$\sqrt{3}$.

点评 本题考查了平面向量的线性运算,数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.12+$\frac{81}{2}$πB.12+81πC.24+$\frac{81}{2}$πD.24+81π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将6个人排成三排,每排各2人则有多少种排法?若甲不在第一排,乙在第二排则有多种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆(x+a)2+y2=1与圆x2+y2=16没有公共点,则正数a的取值范围为(0,3)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,圆O:x2+y2=a2与y轴正半轴交于点B,过点B的直线与椭圆E相切,且与圆O交于另一点A,若∠AOB=60°,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等比数列{an}中,公比为q,Sn为其前n项和.已知q=3,S4=80,则a1的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当0<x≤1时,f(x)=2x,则f(2017)+f(2016)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB⊥AC,AB=AC=2,AA1=3,M是侧棱CC1上一点.
(1)若BM⊥A1C,求$\frac{{{C_1}M}}{MC}$的值;
(2)若MC=2,求直线BA1与平面ABM所成角的正弦值.

查看答案和解析>>

同步练习册答案