分析 (1)由已知条件可得$\left\{{\begin{array}{l}{2{a_1}+2d=8}\\{2{a_1}+4d=12}\end{array}}\right.$,解得a1,d,即可;
(2)由an=2n可得,${b_n}=\frac{a_n}{2^n}=\frac{n}{{{2^{n-1}}}}$,利用错位相减法数列{bn}的前n项和为Tn.
解答 解:(1)由已知条件可得$\left\{{\begin{array}{l}{2{a_1}+2d=8}\\{2{a_1}+4d=12}\end{array}}\right.$,…(3分)
解之得a1=2,d=2,…(4分)
所以,an=2n. …(6分)
(2)由an=2n可得,${b_n}=\frac{a_n}{2^n}=\frac{n}{{{2^{n-1}}}}$,设数列{bn}的前n项和为Tn.
则${T_n}=1+\frac{2}{2}+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}$,…(7分)
∴$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,…(9分)
以上二式相减得$\frac{1}{2}{T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$
=$2(1-\frac{1}{2^n})-\frac{n}{2^n}=2-\frac{n+2}{2^n}$,…(11分)
所以,${T_n}=4-\frac{n+2}{{{2^{n-1}}}}$.…(12分)
点评 本题考查了等差数列的通项公式,错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 249,248 | B. | 249,249 | C. | 248,249 | D. | 248,249 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com