精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{AP}=({1,\sqrt{3}}),\overrightarrow{PB}=({-\sqrt{3},1})$,则向量$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角为$\frac{π}{4}$.

分析 由已知的两个向量坐标得到它们的模长相等,位置关系垂直,从而判断三角形APB的形状得到所求.

解答 解:由已知向量$\overrightarrow{AP}=({1,\sqrt{3}}),\overrightarrow{PB}=({-\sqrt{3},1})$,得到向量$\overrightarrow{AP}$•$\overrightarrow{PB}$=0,且模长相等为2,所以三角形APB为等腰直角三角形,所以$\overrightarrow{AP}$与$\overrightarrow{AB}$的夹角为$\frac{π}{4}$;
故答案为:$\frac{π}{4}$.

点评 本题考查了平面向量数量积公式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=-$\frac{1}{x}$,在区间(0,+∞)内讨论下列问题:
(1)当x1=1及x2=3时,比较f(x1)与f(x2)的大小;
(2)任取x1,x2∈(0,+∞),且x1<x2,比较f(x1)与f(x2)的大小;
(3)由(2)所得的结论判断函数f(x)=-$\frac{1}{x}$在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x+2|-|2x-2|,x∈R.
(1)求不等式f(x)≤3的解集;
(2)若方程$\frac{f(x)}{2}+a=x$有三个实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实数x,y满足$|x+1|≤y≤-\frac{1}{2}x+1$时,目标函数z=mx+y的最大值等于5,则实数m的值为(  )
A.-1B.$-\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=sin2x+2$\sqrt{3}sinxcosx-{cos^2}$x.
(1)求f(x)的最大值及取得最大值时,自变量x的取值集合;
(2)指出函数y=f(x)的图象可以由y=sinx的图象经过哪些变换得到;
(3)当x∈[0,t]时,函数y=f(x)的值域为[-1,2],求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,圆O:x2+y2=a2与y轴正半轴交于点B,过点B的直线与椭圆E相切,且与圆O交于另一点A,若∠AOB=60°,则椭圆E的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,边AB,AC所在直线的方程分别为2x-y+7=0,x-y+6=0,已知M(1,6)是BC边上一点.
(1)若AM为BC边上的高,求直线BC的方程;
(2)若AM为BC边的中线,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}中,其前n项和为Sn,a2=4,S5=30.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足bn=$\frac{1}{S_n}$,求数列{bn}的前项和Tn

查看答案和解析>>

同步练习册答案